Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Topology > General
For a senior undergraduate or first year graduate-level course in Introduction to Topology. Appropriate for a one-semester course on both general and algebraic topology or separate courses treating each topic separately. This text is designed to provide instructors with a convenient single text resource for bridging between general and algebraic topology courses. Two separate, distinct sections (one on general, point set topology, the other on algebraic topology) are each suitable for a one-semester course and are based around the same set of basic, core topics. Optional, independent topics and applications can be studied and developed in depth depending on course needs and preferences.
The term "stereotype space" was introduced in 1995 and denotes a category of locally convex spaces with surprisingly elegant properties. Its study gives an unexpected point of view on functional analysis that brings this fi eld closer to other main branches of mathematics, namely, to algebra and geometry. This volume contains the foundations of the theory of stereotype spaces, with accurate definitions, formulations, proofs, and numerous examples illustrating the interaction of this discipline with the category theory, the theory of Hopf algebras, and the four big geometric disciplines: topology, differential geometry, complex geometry, and algebraic geometry.
This book contains selected chapters on recent research in topology. It bridges the gap between recent trends of topological theories and their applications in areas like social sciences, natural sciences, soft computing, economics, theoretical chemistry, cryptography, pattern recognitions and granular computing. There are 14 chapters, including two chapters on mathematical economics from the perspective of topology. The book discusses topics on function spaces, relator space, preorder, quasi-uniformities, bitopological dynamical systems, b-metric spaces and related fixed point theory. This book is useful to researchers, experts and scientists in studying the cutting-edge research in topology and related areas and helps them applying topology in solving real-life problems the society and science are facing these days..Â
This book explains why the finite topological space known as abstract cell complex is important for successful image processing and presents image processing methods based on abstract cell complex, especially for tracing and encoding of boundaries of homogeneous regions. Many examples are provided in the book, some teach you how to trace and encode boundaries in binary, indexed and colour images. Other examples explain how to encode a boundary as a sequence of straight-line segments which is important for shape recognition. A new method of edge detection in two- and three-dimensional images is suggested. Also, a discussion problem is included in the book: A derivative is defined as the limit of the relation of the increment of the function to the increment of the argument as the latter tends to zero. Is it not better to estimate derivatives as the relation of the increment of the function to the optimal increment of the argument instead of taking exceedingly small increment which leads to errors? This book addresses all above questions and provide the answers.
Noncommutative geometry studies an interplay between spatial forms and algebras with non-commutative multiplication. This book covers the key concepts of noncommutative geometry and its applications in topology, algebraic geometry, and number theory. Our presentation is accessible to the graduate students as well as nonexperts in the field. The second edition includes two new chapters on arithmetic topology and quantum arithmetic.
This book presents material in two parts. Part one provides an introduction to crossed modules of groups, Lie algebras and associative algebras with fully written out proofs and is suitable for graduate students interested in homological algebra. In part two, more advanced and less standard topics such as crossed modules of Hopf algebra, Lie groups, and racks are discussed as well as recent developments and research on crossed modules.
The main purpose of this book, based on undergraduate level courses in mathematics is to provide a preliminary but comprehensive knowledge of metric spaces as well as complex analysis for beginners. The volume is enriched with numerous illustrations to make it user-friendly. It contains approximately fifty diagrams, more than one hundred examples and nearly one hundred and fifty exercises.
This book is the first systematic treatment of this area so far scattered in a vast number of articles. As in classical topology, concrete problems require restricting the (generalized point-free) spaces by various conditions playing the roles of classical separation axioms. These are typically formulated in the language of points; but in the point-free context one has either suitable translations, parallels, or satisfactory replacements. The interrelations of separation type conditions, their merits, advantages and disadvantages, and consequences are discussed. Highlights of the book include a treatment of the merits and consequences of subfitness, various approaches to the Hausdorff's axiom, and normality type axioms. Global treatment of the separation conditions put them in a new perspective, and, a.o., gave some of them unexpected importance. The text contains a lot of quite recent results; the reader will see the directions the area is taking, and may find inspiration for her/his further work. The book will be of use for researchers already active in the area, but also for those interested in this growing field (sometimes even penetrating into some parts of theoretical computer science), for graduate and PhD students, and others. For the reader's convenience, the text is supplemented with an Appendix containing necessary background on posets, frames and locales.
This volume highlights the mathematical research presented at the 2019 Association for Women in Mathematics (AWM) Research Symposium held at Rice University, April 6-7, 2019. The symposium showcased research from women across the mathematical sciences working in academia, government, and industry, as well as featured women across the career spectrum: undergraduates, graduate students, postdocs, and professionals. The book is divided into eight parts, opening with a plenary talk and followed by a combination of research paper contributions and survey papers in the different areas of mathematics represented at the symposium: algebraic combinatorics and graph theory algebraic biology commutative algebra analysis, probability, and PDEs topology applied mathematics mathematics education
This book delivers stimulating input for a broad range of researchers, from geographers and ecologists to psychologists interested in spatial perception and physicists researching in complex systems. How can one decide whether one surface or spatial object is more complex than another? What does it require to measure the spatial complexity of small maps, and why does this matter for nature, science and technology? Drawing from algorithmics, geometry, topology, probability and informatics, and with examples from everyday life, the reader is invited to cross the borders into the bewildering realm of spatial complexity, as it emerges from the study of geographic maps, landscapes, surfaces, knots, 3D and 4D objects. The mathematical and cartographic experiments described in this book lead to hypotheses and enigmas with ramifications in aesthetics and epistemology.
This book provides an introduction to topological groups and the structure theory of locally compact abelian groups, with a special emphasis on Pontryagin-van Kampen duality, including a completely self-contained elementary proof of the duality theorem. Further related topics and applications are treated in separate chapters and in the appendix.
This monograph is the first and an initial introduction to the
theory of bitopological spaces and its applications. In particular,
different families of subsets of bitopological spaces are
introduced and various relations between two topologies are
analyzed on one and the same set; the theory of dimension of
bitopological spaces and the theory of Baire bitopological spaces
are constructed, and various classes of mappings of bitopological
spaces are studied. The previously known results as well the
results obtained in this monograph are applied in analysis,
potential theory, general topology, and theory of ordered
topological spaces. Moreover, a high level of modern knowledge of
bitopological spaces theory has made it possible to introduce and
study algebra of new type, the corresponding representation of
which brings one to the special class of bitopological spaces.
This volume consists of ten articles which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject. This is the first volume in a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
The book is devoted to universality problems.
This elegant little book discusses a famous problem that helped to define the field now known as topology: What is the minimum number of colors required to print a map such that no two adjoining countries have the same color, no matter how convoluted their boundaries. Many famous mathematicians have worked on the problem, but the proof eluded fomulation until the 1950s, when it was finally cracked with a brute-force approach using a computer. The book begins by discussing the history of the problem, and then goes into the mathematics, both pleasantly enough that anyone with an elementary knowledge of geometry can follow it, and still with enough rigor that a mathematician can also read it with pleasure. The authors discuss the mathematics as well as the philosophical debate that ensued when the proof was announced: Just what is a mathematical proof, if it takes a computer to provide one -- and is such a thing a proof at all?
This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT( ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of a given function, best proximity point theory, monotone mappings in modular function spaces, fuzzy contractive mappings, ordered hyperbolic metric spaces, generalized contractions in b-metric spaces, multi-tupled fixed points, functional equations in dynamic programming and Picard operators. This book addresses the mathematical community working with methods and tools of nonlinear analysis. It also serves as a reference, source for examples and new approaches associated with fixed point theory and its applications for a wide audience including graduate students and researchers.
I The fixed point theorems of Brouwer and Schauder.- 1 The fixed point theorem of Brouwer and applications.- 2 The fixed point theorem of Schauder and applications.- II Measures of noncompactness.- 1 The general notion of a measure of noncompactness.- 2 The Kuratowski and Hausdorff measures of noncompactness.- 3 The separation measure of noncompactness.- 4 Measures of noncompactness in Banach sequences spaces.- 5 Theorem of Darbo and Sadovskii and applications.- III Minimal sets for a measure of noncompactness.- 1 o-minimal sets.- 2 Minimalizable measures of noncompactness.- IV Convexity and smoothness.- 1 Strict convexity and smoothness.- 2 k-uniform convexity.- 3 k-uniform smoothness.- V Nearly uniform convexity and nearly uniform smoothness.- 1 Nearly uniformly convex Banach spaces.- 2 Nearly uniformly smooth Banach spaces.- 3 Uniform Opial condition.- VI Fixed points for nonexpansive mappings and normal structure.- 1 Existence of fixed points for nonexpansive mappings: Kirk's theorem.- 2 The coefficient N(X) and its connection with uniform convexity.- 3 The weakly convergent sequence coefficient.- 4 Uniform smoothness, near uniform convexity and normal structure.- 5 Normal structure in direct sum spaces.- 6 Computation of the normal structure coefficients in Lp-spaces.- VII Fixed point theorems in the absence of normal structure.- 1 Goebel-Karlovitz's lemma and Lin's lemma.- 2 The coefficient M(X) and the fixed point property.- VIII Uniformly Lipschitzian mappings.- 1 Lifshitz characteristic and fixed points.- 2 Connections between the Lifshitz characteristic and certain geometric coefficients.- 3 The normal structure coefficient and fixed points.- IX Asymptotically regular mappings.- 1 A fixed point theorem for asymptotically regular mappings.- 2 Connections between the ?-characteristic and some other geometric coefficients.- 3 The weakly convergent sequence coefficient and fixed points.- X Packing rates and o-contractiveness constants.- 1 Comparable measures of noncompactness.- 2 Packing rates of a metric space.- 3 Connections between the packing rates and the normal structure coefficients.- 4 Packing rates in lp-spaces.- 5 Packing rates in Lpspaces.- 6 Packing rates in direct sum spaces.- References.- List of Symbols and Notations.
The subject of nonlinear partial differential equations is experiencing a period of intense activity in the study of systems underlying basic theories in geometry, topology and physics. These mathematical models share the property of being derived from variational principles. Understanding the structure of critical configurations and the dynamics of the corresponding evolution problems is of fundamental importance for the development of the physical theories and their applications. This volume contains survey lectures in four different areas, delivered by leading resarchers at the 1995 Barrett Lectures held at The University of Tennessee: nonlinear hyperbolic systems arising in field theory and relativity (S. Klainerman); harmonic maps from Minkowski spacetime (M. Struwe); dynamics of vortices in the Ginzburg-Landau model of superconductivity (F.-H. Lin); the Seiberg-Witten equations and their application to problems in four-dimensional topology (R. Fintushel). Most of this material has not previously been available in survey form. These lectures provide an up-to-date overview and an introduction to the research literature in each of these areas, which should prove useful to researchers and graduate students in mathematical physics, partial differential equations, differential geometry and topology.
Handbook of Convex Geometry, Volume B offers a survey of convex geometry and its many ramifications and connections with other fields of mathematics, including convexity, lattices, crystallography, and convex functions. The selection first offers information on the geometry of numbers, lattice points, and packing and covering with convex sets. Discussions focus on packing in non-Euclidean spaces, problems in the Euclidean plane, general convex bodies, computational complexity of lattice point problem, centrally symmetric convex bodies, reduction theory, and lattices and the space of lattices. The text then examines finite packing and covering and tilings, including plane tilings, monohedral tilings, bin packing, and sausage problems. The manuscript takes a look at valuations and dissections, geometric crystallography, convexity and differential geometry, and convex functions. Topics include differentiability, inequalities, uniqueness theorems for convex hypersurfaces, mixed discriminants and mixed volumes, differential geometric characterization of convexity, reduction of quadratic forms, and finite groups of symmetry operations. The selection is a dependable source of data for mathematicians and researchers interested in convex geometry.
The book presents surveys describing recent developments in most of
the primary subfields of
Handbook of Convex Geometry, Volume A offers a survey of convex geometry and its many ramifications and relations with other areas of mathematics, including convexity, geometric inequalities, and convex sets. The selection first offers information on the history of convexity, characterizations of convex sets, and mixed volumes. Topics include elementary convexity, equality in the Aleksandrov-Fenchel inequality, mixed surface area measures, characteristic properties of convex sets in analysis and differential geometry, and extensions of the notion of a convex set. The text then reviews the standard isoperimetric theorem and stability of geometric inequalities. The manuscript takes a look at selected affine isoperimetric inequalities, extremum problems for convex discs and polyhedra, and rigidity. Discussions focus on include infinitesimal and static rigidity related to surfaces, isoperimetric problem for convex polyhedral, bounds for the volume of a convex polyhedron, curvature image inequality, Busemann intersection inequality and its relatives, and Petty projection inequality. The book then tackles geometric algorithms, convexity and discrete optimization, mathematical programming and convex geometry, and the combinatorial aspects of convex polytopes. The selection is a valuable source of data for mathematicians and researchers interested in convex geometry. |
You may like...
Topological Methods in Data Analysis and…
Peer-Timo Bremer, Ingrid Hotz, …
Hardcover
R4,258
Discovery Miles 42 580
Configuration Spaces - Geometry…
Filippo Callegaro, Frederick Cohen, …
Hardcover
Topology and Geometric Group Theory…
Michael W. Davis, James Fowler, …
Hardcover
|