![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology > General
This updated and revised edition of a widely acclaimed and
successful text for undergraduates examines topology of recent
compact surfaces through the development of simple ideas in plane
geometry. Containing over 171 diagrams, the approach allows for a
straightforward treatment of its subject area. It is particularly
attractive for its wealth of applications and variety of
interactions with branches of mathematics, linked with surface
topology, graph theory, group theory, vector field theory, and
plane Euclidean and non-Euclidean geometry.
This textbook offers an accessible, modern introduction at undergraduate level to an area known variously as general topology, point-set topology or analytic topology with a particular focus on helping students to build theory for themselves. It is the result of several years of the authors' combined university teaching experience stimulated by sustained interest in advanced mathematical thinking and learning, alongside established research careers in analytic topology. Point-set topology is a discipline that needs relatively little background knowledge, but sufficient determination to grasp ideas precisely and to argue with straight and careful logic. Research and long experience in undergraduate mathematics education suggests that an optimal way to learn such a subject is to teach it to yourself, pro-actively, by guided reading of brief skeleton notes and by doing your own spadework to fill in the details and to flesh out the examples. This text will facilitate such an approach for those learners who opt to do it this way and for those instructors who would like to encourage this so-called 'Moore approach', even for a modest segment of the teaching term or for part of the class. In reality, most students simply do not have the combination of time, background and motivation needed to implement such a plan fully. The accessibility, flexibility and completeness of this text enable it to be used equally effectively for more conventional instructor-led courses. Critically, it furnishes a rich variety of exercises and examples, many of which have specimen solutions, through which to gain in confidence and competence.
This book is devoted to group-theoretic aspects of topological dynamics such as studying groups using their actions on topological spaces, using group theory to study symbolic dynamics, and other connections between group theory and dynamical systems. One of the main applications of this approach to group theory is the study of asymptotic properties of groups such as growth and amenability. The book presents recently developed techniques of studying groups of dynamical origin using the structure of their orbits and associated groupoids of germs, applications of the iterated monodromy groups to hyperbolic dynamical systems, topological full groups and their properties, amenable groups, groups of intermediate growth, and other topics. The book is suitable for graduate students and researchers interested in group theory, transformations defined by automata, topological and holomorphic dynamics, and theory of topological groupoids. Each chapter is supplemented by exercises of various levels of complexity.
For a senior undergraduate or first year graduate-level course in Introduction to Topology. Appropriate for a one-semester course on both general and algebraic topology or separate courses treating each topic separately. This text is designed to provide instructors with a convenient single text resource for bridging between general and algebraic topology courses. Two separate, distinct sections (one on general, point set topology, the other on algebraic topology) are each suitable for a one-semester course and are based around the same set of basic, core topics. Optional, independent topics and applications can be studied and developed in depth depending on course needs and preferences.
Topology Through Inquiry is a comprehensive introduction to point-set, algebraic, and geometric topology, designed to support inquiry-based learning (IBL) courses for upper-division undergraduate or beginning graduate students. The book presents an enormous amount of topology, allowing an instructor to choose which topics to treat. The point-set material contains many interesting topics well beyond the basic core, including continua and metrizability. Geometric and algebraic topology topics include the classification of 2-manifolds, the fundamental group, covering spaces, and homology (simplicial and singular). A unique feature of the introduction to homology is to convey a clear geometric motivation by starting with mod 2 coefficients. The authors are acknowledged masters of IBL-style teaching. This book gives students joy-filled, manageable challenges that incrementally develop their knowledge and skills. The exposition includes insightful framing of fruitful points of view as well as advice on effective thinking and learning. The text presumes only a modest level of mathematical maturity to begin, but students who work their way through this text will grow from mathematics students into mathematicians. Michael Starbird is a University of Texas Distinguished Teaching Professor of Mathematics. Among his works are two other co-authored books in the Mathematical Association of America's (MAA) Textbook series. Francis Su is the Benediktsson-Karwa Professor of Mathematics at Harvey Mudd College and a past president of the MAA. Both authors are award-winning teachers, including each having received the MAA's Haimo Award for distinguished teaching. Starbird and Su are, jointly and individually, on lifelong missions to make learning--of mathematics and beyond--joyful, effective, and available to everyone. This book invites topology students and teachers to join in the adventure.
The term "stereotype space" was introduced in 1995 and denotes a category of locally convex spaces with surprisingly elegant properties. Its study gives an unexpected point of view on functional analysis that brings this fi eld closer to other main branches of mathematics, namely, to algebra and geometry. This volume contains the foundations of the theory of stereotype spaces, with accurate definitions, formulations, proofs, and numerous examples illustrating the interaction of this discipline with the category theory, the theory of Hopf algebras, and the four big geometric disciplines: topology, differential geometry, complex geometry, and algebraic geometry.
This book contains selected chapters on recent research in topology. It bridges the gap between recent trends of topological theories and their applications in areas like social sciences, natural sciences, soft computing, economics, theoretical chemistry, cryptography, pattern recognitions and granular computing. There are 14 chapters, including two chapters on mathematical economics from the perspective of topology. The book discusses topics on function spaces, relator space, preorder, quasi-uniformities, bitopological dynamical systems, b-metric spaces and related fixed point theory. This book is useful to researchers, experts and scientists in studying the cutting-edge research in topology and related areas and helps them applying topology in solving real-life problems the society and science are facing these days..Â
This book explains why the finite topological space known as abstract cell complex is important for successful image processing and presents image processing methods based on abstract cell complex, especially for tracing and encoding of boundaries of homogeneous regions. Many examples are provided in the book, some teach you how to trace and encode boundaries in binary, indexed and colour images. Other examples explain how to encode a boundary as a sequence of straight-line segments which is important for shape recognition. A new method of edge detection in two- and three-dimensional images is suggested. Also, a discussion problem is included in the book: A derivative is defined as the limit of the relation of the increment of the function to the increment of the argument as the latter tends to zero. Is it not better to estimate derivatives as the relation of the increment of the function to the optimal increment of the argument instead of taking exceedingly small increment which leads to errors? This book addresses all above questions and provide the answers.
Noncommutative geometry studies an interplay between spatial forms and algebras with non-commutative multiplication. This book covers the key concepts of noncommutative geometry and its applications in topology, algebraic geometry, and number theory. Our presentation is accessible to the graduate students as well as nonexperts in the field. The second edition includes two new chapters on arithmetic topology and quantum arithmetic.
This book presents material in two parts. Part one provides an introduction to crossed modules of groups, Lie algebras and associative algebras with fully written out proofs and is suitable for graduate students interested in homological algebra. In part two, more advanced and less standard topics such as crossed modules of Hopf algebra, Lie groups, and racks are discussed as well as recent developments and research on crossed modules.
The main purpose of this book, based on undergraduate level courses in mathematics is to provide a preliminary but comprehensive knowledge of metric spaces as well as complex analysis for beginners. The volume is enriched with numerous illustrations to make it user-friendly. It contains approximately fifty diagrams, more than one hundred examples and nearly one hundred and fifty exercises.
This book is the first systematic treatment of this area so far scattered in a vast number of articles. As in classical topology, concrete problems require restricting the (generalized point-free) spaces by various conditions playing the roles of classical separation axioms. These are typically formulated in the language of points; but in the point-free context one has either suitable translations, parallels, or satisfactory replacements. The interrelations of separation type conditions, their merits, advantages and disadvantages, and consequences are discussed. Highlights of the book include a treatment of the merits and consequences of subfitness, various approaches to the Hausdorff's axiom, and normality type axioms. Global treatment of the separation conditions put them in a new perspective, and, a.o., gave some of them unexpected importance. The text contains a lot of quite recent results; the reader will see the directions the area is taking, and may find inspiration for her/his further work. The book will be of use for researchers already active in the area, but also for those interested in this growing field (sometimes even penetrating into some parts of theoretical computer science), for graduate and PhD students, and others. For the reader's convenience, the text is supplemented with an Appendix containing necessary background on posets, frames and locales.
This volume highlights the mathematical research presented at the 2019 Association for Women in Mathematics (AWM) Research Symposium held at Rice University, April 6-7, 2019. The symposium showcased research from women across the mathematical sciences working in academia, government, and industry, as well as featured women across the career spectrum: undergraduates, graduate students, postdocs, and professionals. The book is divided into eight parts, opening with a plenary talk and followed by a combination of research paper contributions and survey papers in the different areas of mathematics represented at the symposium: algebraic combinatorics and graph theory algebraic biology commutative algebra analysis, probability, and PDEs topology applied mathematics mathematics education
This book delivers stimulating input for a broad range of researchers, from geographers and ecologists to psychologists interested in spatial perception and physicists researching in complex systems. How can one decide whether one surface or spatial object is more complex than another? What does it require to measure the spatial complexity of small maps, and why does this matter for nature, science and technology? Drawing from algorithmics, geometry, topology, probability and informatics, and with examples from everyday life, the reader is invited to cross the borders into the bewildering realm of spatial complexity, as it emerges from the study of geographic maps, landscapes, surfaces, knots, 3D and 4D objects. The mathematical and cartographic experiments described in this book lead to hypotheses and enigmas with ramifications in aesthetics and epistemology.
This monograph is the first and an initial introduction to the
theory of bitopological spaces and its applications. In particular,
different families of subsets of bitopological spaces are
introduced and various relations between two topologies are
analyzed on one and the same set; the theory of dimension of
bitopological spaces and the theory of Baire bitopological spaces
are constructed, and various classes of mappings of bitopological
spaces are studied. The previously known results as well the
results obtained in this monograph are applied in analysis,
potential theory, general topology, and theory of ordered
topological spaces. Moreover, a high level of modern knowledge of
bitopological spaces theory has made it possible to introduce and
study algebra of new type, the corresponding representation of
which brings one to the special class of bitopological spaces.
This book provides an introduction to topological groups and the structure theory of locally compact abelian groups, with a special emphasis on Pontryagin-van Kampen duality, including a completely self-contained elementary proof of the duality theorem. Further related topics and applications are treated in separate chapters and in the appendix.
The main topic of the book is amenable groups, i.e., groups on which there exist invariant finitely additive measures. It was discovered that the existence or non-existence of amenability is responsible for many interesting phenomena such as, e.g., the Banach-Tarski Paradox about breaking a sphere into two spheres of the same radius. Since then, amenability has been actively studied and a number of different approaches resulted in many examples of amenable and non-amenable groups. In the book, the author puts together main approaches to study amenability. A novel feature of the book is that the exposition of the material starts with examples which introduce a method rather than illustrating it. This allows the reader to quickly move on to meaningful material without learning and remembering a lot of additional definitions and preparatory results; those are presented after analyzing the main examples. The techniques that are used for proving amenability in this book are mainly a combination of analytic and probabilistic tools with geometric group theory.
This volume consists of ten articles which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject. This is the first volume in a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
The book is devoted to universality problems.
This book is a collection of articles written in memory of Boris Dubrovin (1950-2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: ``Integrable Systems'' and ``Quantum Theories and Algebraic Geometry'', reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
This elegant little book discusses a famous problem that helped to define the field now known as topology: What is the minimum number of colors required to print a map such that no two adjoining countries have the same color, no matter how convoluted their boundaries. Many famous mathematicians have worked on the problem, but the proof eluded fomulation until the 1950s, when it was finally cracked with a brute-force approach using a computer. The book begins by discussing the history of the problem, and then goes into the mathematics, both pleasantly enough that anyone with an elementary knowledge of geometry can follow it, and still with enough rigor that a mathematician can also read it with pleasure. The authors discuss the mathematics as well as the philosophical debate that ensued when the proof was announced: Just what is a mathematical proof, if it takes a computer to provide one -- and is such a thing a proof at all?
This book is a collection of articles written in memory of Boris Dubrovin (1950-2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: ``Integrable Systems'' and ``Quantum Theories and Algebraic Geometry'', reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests. |
![]() ![]() You may like...
Measures of Noncompactness in Metric…
J. M Ayerbe Toledano, Etc, …
Hardcover
R2,512
Discovery Miles 25 120
Advances in Metric Fixed Point Theory…
Yeol Je Cho, Mohamed Jleli, …
Hardcover
R3,783
Discovery Miles 37 830
Nonlinear Partial Differential Equations…
Garth Baker, Alexandre S. Freire
Hardcover
R2,514
Discovery Miles 25 140
|