![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology > General
This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed.< The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are presented in Part 1 for convenience. The book is accessible to ambitious undergraduates, graduates, and researchers in dynamical systems and low dimensional topology. This volume consists of 10 chapters; each chapter contains its own set of references and a section on further reading. Proofs are presented with the exact statements of the results. In Chapter 10 the authors briefly state the necessary definitions and results from algebra, geometry and topology. When stating ancillary results at the beginning of each part, the authors refer to other sources which are readily available.
This is a monograph covering topological fixed point theory for several classes of single and multivalued maps. The authors begin by presenting basic notions in locally convex topological vector spaces. Special attention is then devoted to weak compactness, in particular to the theorems of Eberlein-Smulian, Grothendick and Dunford-Pettis. Leray-Schauder alternatives and eigenvalue problems for decomposable single-valued nonlinear weakly compact operators in Dunford-Pettis spaces are considered, in addition to some variants of Schauder, Krasnoselskii, Sadovskii, and Leray-Schauder type fixed point theorems for different classes of weakly sequentially continuous operators on general Banach spaces. The authors then proceed with an examination of Sadovskii, Furi-Pera, and Krasnoselskii fixed point theorems and nonlinear Leray-Schauder alternatives in the framework of weak topologies and involving multivalued mappings with weakly sequentially closed graph. These results are formulated in terms of axiomatic measures of weak noncompactness. The authors continue to present some fixed point theorems in a nonempty closed convex of any Banach algebras or Banach algebras satisfying a sequential condition (P) for the sum and the product of nonlinear weakly sequentially continuous operators, and illustrate the theory by considering functional integral and partial differential equations. The existence of fixed points, nonlinear Leray-Schauder alternatives for different classes of nonlinear (ws)-compact operators (weakly condensing, 1-set weakly contractive, strictly quasi-bounded) defined on an unbounded closed convex subset of a Banach space are also discussed. The authors also examine the existence of nonlinear eigenvalues and eigenvectors, as well as the surjectivity of quasibounded operators. Finally, some approximate fixed point theorems for multivalued mappings defined on Banach spaces. Weak and strong topologies play a role here and both bounded and unbounded regions are considered. The authors explicate a method developed to indicate how to use approximate fixed point theorems to prove the existence of approximate Nash equilibria for non-cooperative games. Fixed point theory is a powerful and fruitful tool in modern mathematics and may be considered as a core subject in nonlinear analysis. In the last 50 years, fixed point theory has been a flourishing area of research. As such, the monograph begins with an overview of these developments before gravitating towards topics selected to reflect the particular interests of the authors.
The main objective of this book is to give a broad uni?ed introduction to the study of dimension and recurrence inhyperbolic dynamics. It includes a disc- sion of the foundations, main results, and main techniques in the rich interplay of fourmain areas of research: hyperbolic dynamics, dimension theory, multifractal analysis, and quantitative recurrence. It also gives a panorama of several selected topics of current research interest. This includes topics on irregular sets, var- tional principles, applications to number theory, measures of maximal dimension, multifractal rigidity, and quantitative recurrence. The book isdirected to researchersas well as graduate students whowish to have a global view of the theory together with a working knowledgeof its main techniques. It can also be used as a basis for graduatecourses in dimension theory of dynamical systems, multifractal analysis (together with a discussion of several special topics), and pointwise dimension and recurrence in hyperbolic dynamics. I hope that the book may serve as a fast entry point to this exciting and active ?eld of research, and also that it may lead to further developments.
The central theme of this book is the restoration of Poincare duality on stratified singular spaces by using Verdier-self-dual sheaves such as the prototypical intersection chain sheaf on a complex variety. Highlights include complete and detailed proofs of decomposition theorems for self-dual sheaves, explanation of methods for computing twisted characteristic classes and an introduction to the author's theory of non-Witt spaces and Lagrangian structures."
This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs) . As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.
This volume contains selected papers authored by speakers and participants of the 2013 Arbeitstagung, held at the Max Planck Institute for Mathematics in Bonn, Germany, from May 22-28. The 2013 meeting (and this resulting proceedings) was dedicated to the memory of Friedrich Hirzebruch, who passed away on May 27, 2012. Hirzebruch organized the first Arbeitstagung in 1957 with a unique concept that would become its most distinctive feature: the program was not determined beforehand by the organizers, but during the meeting by all participants in an open discussion. This ensured that the talks would be on the latest developments in mathematics and that many important results were presented at the conference for the first time. Written by leading mathematicians, the papers in this volume cover various topics from algebraic geometry, topology, analysis, operator theory, and representation theory and display the breadth and depth of pure mathematics that has always been characteristic of the Arbeitstagung.
This introduction to topology emphasises a geometric approach with a focus on surfaces. A primary feature is a large collection of exercises and projects, which fosters a teaching style making the student an active class participant. A wide range of material at different levels supports flexible use of the book for a variety of students. Part I is appropriate for a one semester or two quarter course, and Part II, (which is problem based), allows the book to be used for a year long course which supports a variety of syllabuses.
Two top experts in topology, O.Ya. Viro and D.B. Fuchs, give an up-to-date account of research in central areas of topology and the theory of Lie groups. They cover homotopy, homology and cohomology as well as the theory of manifolds, Lie groups, Grassmanians and low-dimensional manifolds.Their book will be used by graduate students and researchers in mathematics and mathematical physics.
Configurations can be studied from a graph-theoretical viewpoint via the so-called Levi graphs and lie at the heart of graphs, groups, surfaces, and geometries, all of which are very active areas of mathematical exploration. In this self-contained textbook, algebraic graph theory is used to introduce groups; topological graph theory is used to explore surfaces; and geometric graph theory is implemented to analyze incidence geometries. After a preview of configurations in Chapter 1, a concise introduction to graph theory is presented in Chapter 2, followed by a geometric introduction to groups in Chapter 3. Maps and surfaces are combinatorially treated in Chapter 4. Chapter 5 introduces the concept of incidence structure through vertex colored graphs, and the combinatorial aspects of classical configurations are studied. Geometric aspects, some historical remarks, references, and applications of classical configurations appear in the last chapter. With over two hundred illustrations, challenging exercises at the end of each chapter, a comprehensive bibliography, and a set of open problems, Configurations from a Graphical Viewpoint is well suited for a graduate graph theory course, an advanced undergraduate seminar, or a self-contained reference for mathematicians and researchers.
This book covers the fundamental results of the dimension theory of metrizable spaces, especially in the separable case. Its distinctive feature is the emphasis on the negative results for more general spaces, presenting a readable account of numerous counterexamples to well-known conjectures that have not been discussed in existing books. Moreover, it includes three new general methods for constructing spaces: Mrowka's psi-spaces, van Douwen's technique of assigning limit points to carefully selected sequences, and Fedorchuk's method of resolutions. Accessible to readers familiar with the standard facts of general topology, the book is written in a reader-friendly style suitable for self-study. It contains enough material for one or more graduate courses in dimension theory and/or general topology. More than half of the contents do not appear in existing books, making it also a good reference for libraries and researchers.
This book addresses the need for an accessible comprehensive exposition of the theory of uniform measures; the need that became more critical when recently uniform measures reemerged in new results in abstract harmonic analysis. Until now, results about uniform measures have been scattered through many papers written by a number of authors, some unpublished, written using a variety of definitions and notations. Uniform measures are certain functionals on the space of bounded uniformly continuous functions on a uniform space. They are a common generalization of several classes of measures and measure-like functionals studied in abstract and topological measure theory, probability theory, and abstract harmonic analysis. They offer a natural framework for results about topologies on spaces of measures and about the continuity of convolution of measures on topological groups and semitopological semigroups. The book is a reference for the theory of uniform measures. It includes a self-contained development of the theory with complete proofs, starting with the necessary parts of the theory of uniform spaces. It presents diverse results from many sources organized in a logical whole, and includes several new results. The book is also suitable for graduate or advanced undergraduate courses on selected topics in topology and functional analysis. The text contains a number of exercises with solution hints, and four problems with suggestions for further research. "
A new foundation of Topology, summarized under the name Convenient Topology, is considered such that several deficiencies of topological and uniform spaces are remedied. This does not mean that these spaces are superfluous. It means exactly that a better framework for handling problems of a topological nature is used. In this setting semiuniform convergence spaces play an essential role. They include not only convergence structures such as topological structures and limit space structures, but also uniform convergence structures such as uniform structures and uniform limit space structures, and they are suitable for studying continuity, Cauchy continuity and uniform continuity as well as convergence structures in function spaces, e.g. simple convergence, continuous convergence and uniform convergence. Various interesting results are presented which cannot be obtained by using topological or uniform spaces in the usual context. The text is self-contained with the exception of the last chapter, where the intuitive concept of nearness is incorporated in Convenient Topology (there exist already excellent expositions on nearness spaces).
Elliptic cohomology is an extremely beautiful theory with both geometric and arithmetic aspects. The former is explained by the fact that the theory is a quotient of oriented cobordism localised away from 2, the latter by the fact that the coefficients coincide with a ring of modular forms. The aim of the book is to construct this cohomology theory, and evaluate it on classifying spaces BG of finite groups G. This class of spaces is important, since (using ideas borrowed from Monstrous Moonshine') it is possible to give a bundle-theoretic definition of EU-(BG). Concluding chapters also discuss variants, generalisations and potential applications.
"Singular Loci of Schubert Varieties" is a unique work at the crossroads of representation theory, algebraic geometry, and combinatorics. Over the past 20 years, many research articles have been written on the subject in notable journals. In this work, Billey and Lakshmibai have recreated and restructured the various theories and approaches of those articles and present a clearer understanding of this important subdiscipline of Schubert varieties a" namely singular loci. The main focus, therefore, is on the computations for the singular loci of Schubert varieties and corresponding tangent spaces. The methods used include standard monomial theory, the nil Hecke ring, and Kazhdan-Lusztig theory. New results are presented with sufficient examples to emphasize key points. A comprehensive bibliography, index, and tables a" the latter not to be found elsewhere in the mathematics literature a" round out this concise work. After a good introduction giving background material, the topics are presented in a systematic fashion to engage a wide readership of researchers and graduate students.
"La narraci6n literaria es la evocaci6n de las nostalgias. " ("Literary narration is the evocation of nostalgia. ") G. G. Marquez, interview in Puerta del Sol, VII, 4, 1996. A Personal Prehistory In 1972 I started cooperating with members of the Biodynamics Research Unit at the Mayo Clinic in Rochester, Minnesota, which was under the direction of Earl H. Wood. At that time, their ambitious (and eventually realized) dream was to build the Dynamic Spatial Reconstructor (DSR), a device capable of collecting data regarding the attenuation of X-rays through the human body fast enough for stop-action imaging the full extent of the beating heart inside the thorax. Such a device can be applied to study the dynamic processes of cardiopulmonary physiology, in a manner similar to the application of an ordinary cr (computerized tomography) scanner to observing stationary anatomy. The standard method of displaying the information produced by a cr scanner consists of showing two-dimensional images, corresponding to maps of the X-ray attenuation coefficient in slices through the body. (Since different tissue types attenuate X-rays differently, such maps provide a good visualization of what is in the body in those slices; bone - which attenuates X-rays a lot - appears white, air appears black, tumors typically appear less dark than the surrounding healthy tissue, etc. ) However, it seemed to me that this display mode would not be appropriate for the DSR.
This classic work has been fundamentally revised to take account of
recent developments in general topology. The first three chapters
remain unchanged except for numerous minor corrections and
additional exercises, but chapters IV-VII and the new chapter VIII
cover the rapid changes that have occurred since 1968 when the
first edition appeared.
The material and references in this extended second edition of "The Topology of Torus Actions on Symplectic Manifolds," published as Volume 93 in this series in 1991, have been updated. Symplectic manifolds and torus actions are investigated, with numerous examples of torus actions, for instance on some moduli spaces. Although the book is still centered on convexity results, it contains much more material, in particular lots of new examples and exercises.
Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explore similar systems that instead evolve on differentiable manifolds. The first part discusses the linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincare maps, Floquet theory, the Poincare-Bendixson theorem, bifurcations, and chaos. The second part of the book begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms.
A consistent and near complete survey of the important progress made in the field over the last few years, with the main emphasis on the rigidity method and its applications. Among others, this monograph presents the most successful existence theorems known and construction methods for Galois extensions as well as solutions for embedding problems combined with a collection of the existing Galois realizations.
gentle introduction to the subject, leading the reader to understand the notion of what is important in topology with regard to geometry. Divided into three sections - The line and the plane, Metric spaces and Topological spaces -, the book eases the move into higher levels of abstraction. Students are thereby informally assisted in learning new ideas while remaining on familiar territory. The authors do not assume previous knowledge of axiomatic approach or set theory. Similarly, they have restricted the mathematical vocabulary in the book so as to avoid overwhelming the reader, and the concept of convergence is employed to allow students to focus on a central theme while moving to a natural understanding of the notion of topology. The pace of the book is relaxed with gradual acceleration: the first nine sections form a balanced course in metric spaces for undergraduates while also containing ample material for a two-semester graduate course. Finally, the book illustrates the many connections between topology and other subjects, such as analysis and set theory, via the inclusion of "Extras" at the end of each chapter presenting a brief foray outside topology.
For a senior undergraduate or first year graduate-level course in Introduction to Topology. Appropriate for a one-semester course on both general and algebraic topology or separate courses treating each topic separately. This text is designed to provide instructors with a convenient single text resource for bridging between general and algebraic topology courses. Two separate, distinct sections (one on general, point set topology, the other on algebraic topology) are each suitable for a one-semester course and are based around the same set of basic, core topics. Optional, independent topics and applications can be studied and developed in depth depending on course needs and preferences.
This reference work deals with important topics in general topology and their role in functional analysis and axiomatic set theory, for graduate students and researchers working in topology, functional analysis, set theory and probability theory. It provides a guide to recent research findings, with three contributions by Arhangel'skii and Choban.
Presenting the latest findings in topics from across the mathematical spectrum, this volume includes results in pure mathematics along with a range of new advances and novel applications to other fields such as probability, statistics, biology, and computer science. All contributions feature authors who attended the Association for Women in Mathematics Research Symposium in 2015: this conference, the third in a series of biennial conferences organized by the Association, attracted over 330 participants and showcased the research of women mathematicians from academia, industry, and government.
We have tried to design this book for both instructional and reference use, during and after a first course in algebraic topology aimed at users rather than developers; indeed, the book arose from such courses taught by the authors. We start gently, with numerous pictures to illustrate the fundamental ideas and constructions in homotopy theory that are needed in later chapters. A certain amount of redundancy is built in for the reader's convenience: we hope to minimize: fiipping back and forth, and we have provided some appendices for reference. The first three are concerned with background material in algebra, general topology, manifolds, geometry and bundles. Another gives tables of homo topy groups that should prove useful in computations, and the last outlines the use of a computer algebra package for exterior calculus. Our approach has been that whenever a construction from a proof is needed, we have explicitly noted and referenced this. In general, wehavenot given a proof unless it yields something useful for computations. As always, the only way to un derstand mathematics is to do it and use it. To encourage this, Ex denotes either an example or an exercise. The choice is usually up to you the reader, depending on the amount of work you wish to do; however, some are explicitly stated as ( unanswered) questions. In such cases, our implicit claim is that you will greatly benefit from at least thinking about how to answer them."
This book contains essential material that every graduate student must know. Written with Serge Lang's inimitable wit and clarity, the volume introduces the reader to manifolds, differential forms, Darboux's theorem, Frobenius, and all the central features of the foundations of differential geometry. Lang lays the basis for further study in geometric analysis, and provides a solid resource in the techniques of differential topology. The book will have a key position on my shelf. -Steven Krantz, Washington University in St. Louis This is an elementary, finite dimensional version of the author's classic monograph, Introduction to Differentiable Manifolds (1962), which served as the standard reference for infinite dimensional manifolds. It provides a firm foundation for a beginner's entry into geometry, topology, and global analysis. The exposition is unencumbered by unnecessary formalism, notational or otherwise, which is a pitfall few writers of introductory texts of the subject manage to avoid. The author's hallmark characteristics of directness, conciseness, and structural clarity are everywhere in evidence. A nice touch is the inclusion of more advanced topics at the end of the book, including the computation of the top cohomology group of a manifolds, a generalized divergence theorem of Gauss, and an elementary residue theorem of several complex variables. If getting to the main point of an argument or having the key ideas of a subject laid bare is important to you, then you would find the reading of this book a satisfying experience. |
You may like...
The Interdisciplinary Handbook of…
Warren Mansell, Eva de Hullu, …
Paperback
R3,942
Discovery Miles 39 420
Stromal Signaling in Cancer, Volume 154
Peggi Angel, Michael Ostrowski
Hardcover
R3,712
Discovery Miles 37 120
|