![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology > General
This is a comprehensive introduction into the method of inverse spectra - a powerful method successfully employed in various branches of topology. The notion of an inverse sequence and its limits, first appeared in the well-known memoir by Alexandrov where a special case of inverse spectra - the so-called projective spectra - were considered. The concept of an inverse spectrum in its present form was first introduced by Lefschetz. Meanwhile, Freudental, had introduced the notion of a morphism of inverse spectra. The foundations of the entire method of inverse spectra were laid down in these basic works. Subsequently, inverse spectra began to be widely studied and applied, not only in the various major branches of topology, but also in functional analysis and algebra. This is not surprising considering the categorical nature of inverse spectra and the extraordinary power of the related techniques. Updated surveys (including proofs of several statements) of the Hilbert cube and Hilbert space manifold theories are included in the book. Recent developments of the Menger and Nobeling manifold theories are also presented. This work significantly extends and updates the author's previously published book and has been completely rewritten in order to incorporate new developments in the field.
Karl Menger, one of the founders of dimension theory, belongs to the most original mathematicians and thinkers of the twentieth century. He was a member of the Vienna Circle and the founder of its mathematical equivalent, the Viennese Mathematical Colloquium. Both during his early years in Vienna, and after his emigration to the United States, Karl Menger made significant contributions to a wide variety of mathematical fields, and greatly influenced some of his colleagues. The Selecta Mathematica contain Menger's major mathematical papers, based on his own selection of his extensive writings. They deal with topics as diverse as topology, geometry, analysis and algebra, as well as writings on economics, sociology, logic, philosophy and mathematical results. The two volumes are a monument to the diversity and originality of Menger's ideas.
From the reviews of the first edition:
The new student in differential and low-dimensional topology is faced with a bewildering array of tools and loosely connected theories. This short book presents the essential parts of each, enabling the reader to become 'literate' in the field and begin research as quickly as possible. The only prerequisite assumed is an undergraduate algebraic topology course. The first half of the text reviews basic notions of differential topology and culminates with the classification of exotic seven-spheres. It then dives into dimension three and knot theory. There then follows an introduction to Heegaard Floer homology, a powerful collection of modern invariants of three- and four-manifolds, and of knots, that has not before appeared in an introductory textbook. The book concludes with a glimpse of four-manifold theory. Students will find it an exhilarating and authoritative guide to a broad swathe of the most important topics in modern topology.
In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for calculating them. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties will help students gain a rounded understanding of the subject.
This IMA Volume in Mathematics and its Applications TOWARDS HIGHER CATEGORIES contains expository and research papers based on a highly successful IMA Summer Program on n-Categories: Foundations and Applications. We are grateful to all the participants for making this occasion a very productive and stimulating one. We would like to thank John C. Baez (Department of Mathematics, University of California Riverside) and J. Peter May (Department of Ma- ematics, University of Chicago) for their superb role as summer program organizers and editors of this volume. We take this opportunity to thank the National Science Foundation for its support of the IMA. Series Editors Fadil Santosa, Director of the IMA Markus Keel, Deputy Director of the IMA v PREFACE DEDICATED TO MAX KELLY, JUNE 5 1930 TO JANUARY 26 2007. This is not a proceedings of the 2004 conference "n-Categories: Fo- dations and Applications" that we organized and ran at the IMA during the two weeks June 7-18, 2004! We thank all the participants for helping make that a vibrant and inspiring occasion. We also thank the IMA sta? for a magni?cent job. There has been a great deal of work in higher c- egory theory since then, but we still feel that it is not yet time to o?er a volume devoted to the main topic of the conference.
Transformation Geometry: An Introduction to Symmetry offers a modern approach to Euclidean Geometry. This study of the automorphism groups of the plane and space gives the classical concrete examples that serve as a meaningful preparation for the standard undergraduate course in abstract algebra. The detailed development of the isometries of the plane is based on only the most elementary geometry and is appropriate for graduate courses for secondary teachers.
Written in an accessible and informal style, this textbook is designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors. The book has its origins in a series of lecture courses given by the authors, all internationally known mathematicians and renowned expositors. The introduction by Nigel Hitchin addresses the meaning of integrability: how do we recognize an integrable system? His own contribution then develops connections with algebraic geometry, and includes an introduction to Riemann surfaces, sheaves, and line bundles.
'Et moi, ... si favait III mmment en revenir, One service mathematics has rendered the je n'y serais point aile: ' human race. It has put CXlUImon sense back Iules Verne where it belongs. on the topmost shelf next to the dUlty canister lahelled 'discarded non- The series i. divergent; therefore we may be able to do something with it. Eric T. Bell O. Hesvi.ide Mathematics is a tool for thOUght. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d't tre of this series."
This superb text describes a novel and powerful method for allowing
design engineers to firstly model a linear problem in heat
conduction, then build a solution in an explicit form and finally
obtain a numerical solution. It constitutes a modelling and
calculation tool based on a very efficient and systemic
methodological approach.
1. 1 Preface Many phenomena from physics, biology, chemistry and economics are modeled by di?erential equations with parameters. When a nonlinear equation is est- lished, its behavior/dynamics should be understood. In general, it is impossible to ?nd a complete dynamics of a nonlinear di?erential equation. Hence at least, either periodic or irregular/chaotic solutions are tried to be shown. So a pr- erty of a desired solution of a nonlinear equation is given as a parameterized boundary value problem. Consequently, the task is transformed to a solvability of an abstract nonlinear equation with parameters on a certain functional space. When a family of solutions of the abstract equation is known for some para- ters, the persistence or bifurcations of solutions from that family is studied as parameters are changing. There are several approaches to handle such nonl- ear bifurcation problems. One of them is a topological degree method, which is rather powerful in cases when nonlinearities are not enough smooth. The aim of this book is to present several original bifurcation results achieved by the author using the topological degree theory. The scope of the results is rather broad from showing periodic and chaotic behavior of non-smooth mechanical systems through the existence of traveling waves for ordinary di?erential eq- tions on in?nite lattices up to study periodic oscillations of undamped abstract waveequationsonHilbertspaceswithapplicationstononlinearbeamandstring partial di?erential equations. 1.
This book presents, in a clear and structured way, the set function \mathcal{T} and how it evolved since its inception by Professor F. Burton Jones in the 1940s. It starts with a very solid introductory chapter, with all the prerequisite material for navigating through the rest of the book. It then gradually advances towards the main properties, Decomposition theorems, \mathcal{T}-closed sets, continuity and images, to modern applications. The set function \mathcal{T} has been used by many mathematicians as a tool to prove results about the semigroup structure of the continua, and about the existence of a metric continuum that cannot be mapped onto its cone or to characterize spheres. Nowadays, it has been used by topologists worldwide to investigate open problems in continuum theory. This book can be of interest to both advanced undergraduate and graduate students, and to experienced researchers as well. Its well-defined structure make this book suitable not only for self-study but also as support material to seminars on the subject. Its many open problems can potentially encourage mathematicians to contribute with further advancements in the field.
''Intended mainly for physicists and mathematicians...its high quality will definitely attract a wider audience.'' ---Computational Mathematics and Mathematical Physics This work acquaints the physicist with the mathematical principles of algebraic topology, group theory, and differential geometry, as applicable to research in field theory and the theory of condensed matter. Emphasis is placed on the topological structure of monopole and instanton solution to the Yang-Mills equations, the description of phases in superfluid 3He, and the topology of singular solutions in 3He and liquid crystals.
This book presents 13 peer-reviewed papers as written results from the 2005 workshop "Topology-Based Methods in Visualization" that was initiated to enable additional stimulation in this field. It contains a survey of the state-of-the-art, as well original work by leading experts that has not been published before, spanning both theory and applications. It captures key concepts and novel ideas and serves as an overview of current trends in its subject.
This book is the second volume of the Handbook of the History of General Topology. As was the case for the first volume, the contributions contained in it concern either individual topologists, specific schools of topology, specific periods of development, specific topics or a combination of these. The second volume focuses on the work of famous topologists, such as W. Sierpinski, K. Kuratowski (both by R. Engelkind), S. Mazurkiewicz (by R. Pol) and R.G. Bing (by M. Starbird). Furthermore, it contains articles covering Uniform, Proximinal and Nearness Concepts in Topology (by H.L. Bentley, H. Herrlich, M. Husek), Hausdorff Compactifications (by R.E. Chandler, G. Faulkner), Continua Theory (by J.J. Charatonik), Generalized Metrizable Spaces (by R.E. Hodel), Minimal Hausdorff Spaces and Maximally Connected Spaces (by J.R. Porter, R.M. Stephenson Jr.), Orderable Spaces (by S. Purisch), Developable Spaces (by S.D. Shore) and The Alexandroff-Sorgenfrey Line (by D.E. Cameron). Together with the first volume and the forthcoming volume(s) this work on the history of topology, in all its aspects, is unique, and presents important views and insights into the problems and development of topological theories and applications of topological concepts, and into the life and work of topologists. As such it will encourage not only further study in the history of the subject, but also further mathematical research in the field. It is an invaluable tool for topology researchers and topology teachers throughout the mathematical world.
The representation theory of Lie groups plays a central role in both clas sical and recent developments in many parts of mathematics and physics. In August, 1995, the Fifth Workshop on Representation Theory of Lie Groups and its Applications took place at the Universidad Nacional de Cordoba in Argentina. Organized by Joseph Wolf, Nolan Wallach, Roberto Miatello, Juan Tirao, and Jorge Vargas, the workshop offered expository courses on current research, and individual lectures on more specialized topics. The present vol ume reflects the dual character of the workshop. Many of the articles will be accessible to graduate students and others entering the field. Here is a rough outline of the mathematical content. (The editors beg the indulgence of the readers for any lapses in this preface in the high standards of historical and mathematical accuracy that were imposed on the authors of the articles. ) Connections between flag varieties and representation theory for real re ductive groups have been studied for almost fifty years, from the work of Gelfand and Naimark on principal series representations to that of Beilinson and Bernstein on localization. The article of Wolf provides a detailed introduc tion to the analytic side of these developments. He describes the construction of standard tempered representations in terms of square-integrable partially harmonic forms (on certain real group orbits on a flag variety), and outlines the ingredients in the Plancherel formula. Finally, he describes recent work on the complex geometry of real group orbits on partial flag varieties."
The main purpose of this book, based on undergraduate level courses in mathematics is to provide a preliminary but comprehensive knowledge of metric spaces as well as complex analysis for beginners. The volume is enriched with numerous illustrations to make it user-friendly. It contains approximately fifty diagrams, more than one hundred examples and nearly one hundred and fifty exercises.
Approach your problems from the right end It isn't that they can't see the solution. and begin with the answers. Then one day, It is that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' Brown 'The point of a Pin'. in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thouglit to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sci ences has changed drastically in recent years: measure theory is used (non-trivially) in re gional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homo topy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces."
Presents hyperspace fundamentals, offering a basic overview and a foundation for further study. Topics include the topology for hyperspaces, examples of geometric models for hyperspaces, 2x and C(X) for Peano continua X, arcs in hyperspaces, the shape and contractability of hyperspaces, hyperspaces and the fixed point property, and Whitney maps. The text contains examples and exercises throughout, and provides proofs for most results.
Intuitively, a foliation corresponds to a decomposition of a manifold into a union of connected, disjoint submanifolds of the same dimension, called leaves, which pile up locally like pages of a book. The theory of foliations, as it is known, began with the work of C. Ehresmann and G. Reeb, in the 1940's; however, as Reeb has himself observed, already in the last century P. Painleve saw the necessity of creating a geometric theory (of foliations) in order to better understand the problems in the study of solutions of holomorphic differential equations in the complex field. The development of the theory of foliations was however provoked by the following question about the topology of manifolds proposed by H. Hopf in the 3 1930's: "Does there exist on the Euclidean sphere S a completely integrable vector field, that is, a field X such that X* curl X * 0?" By Frobenius' theorem, this question is equivalent to the following: "Does there exist on the 3 sphere S a two-dimensional foliation?" This question was answered affirmatively by Reeb in his thesis, where he 3 presents an example of a foliation of S with the following characteristics: There exists one compact leaf homeomorphic to the two-dimensional torus, while the other leaves are homeomorphic to two-dimensional planes which accu mulate asymptotically on the compact leaf. Further, the foliation is C"".
This volume is devoted to various aspects of Alexandrov Geometry for those wishing to get a detailed picture of the advances in the field. It contains enhanced versions of the lecture notes of the two mini-courses plus those of one research talk given at CIMAT. Peter Petersen's part aims at presenting various rigidity results about Alexandrov spaces in a way that facilitates the understanding by a larger audience of geometers of some of the current research in the subject. They contain a brief overview of the fundamental aspects of the theory of Alexandrov spaces with lower curvature bounds, as well as the aforementioned rigidity results with complete proofs. The text from Fernando Galaz-Garci a's minicourse was completed in collaboration with Jesu s Nun ez-Zimbro n. It presents an up-to-date and panoramic view of the topology and geometry of 3-dimensional Alexandrov spaces, including the classification of positively and non-negatively curved spaces and the geometrization theorem. They also present Lie group actions and their topological and equivariant classifications as well as a brief account of results on collapsing Alexandrov spaces. Jesu s Nun ez-Zimbro n's contribution surveys two recent developments in the understanding of the topological and geometric rigidity of singular spaces with curvature bounded below.
The theory of vertex operator algebras and their representations has been showing its power in the solution of concrete mathematical problems and in the understanding of conceptual but subtle mathematical and physical struc- tures of conformal field theories. Much of the recent progress has deep connec- tions with complex analysis and conformal geometry. Future developments, especially constructions and studies of higher-genus theories, will need a solid geometric theory of vertex operator algebras. Back in 1986, Manin already observed in [Man) that the quantum theory of (super )strings existed (in some sense) in two entirely different mathematical fields. Under canonical quantization this theory appeared to a mathematician as the representation theories of the Heisenberg, Vir as oro and affine Kac- Moody algebras and their superextensions. Quantization with the help of the Polyakov path integral led on the other hand to the analytic theory of algebraic (super ) curves and their moduli spaces, to invariants of the type of the analytic curvature, and so on. He pointed out further that establishing direct mathematical connections between these two forms of a single theory was a "big and important problem. " On the one hand, the theory of vertex operator algebras and their repre- sentations unifies (and considerably extends) the representation theories of the Heisenberg, Virasoro and Kac-Moody algebras and their superextensions.
This treatment of differential geometry and the mathematics required for general relativity makes the subject of this book accessible for the first time to anyone familiar with elementary calculus in one variable and with a knowledge of some vector algebra. The emphasis throughout is on the geometry of the mathematics, which is greatly enhanced by the many illustrations presenting figures of three and more dimensions as closely as book form will allow. The imaginative text is a major contribution to expounding the subject of differential geometry as applied to studies in relativity, and will prove of interest to a large number of mathematicians and physicists. Review from L'Enseignement Mathématique |
You may like...
Topological Groups - Yesterday, Today…
Sidney A. Morris
Hardcover
|