0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (13)
  • R250 - R500 (40)
  • R500+ (1,114)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Mathematics > Topology > General

An Introduction to Lorentz Surfaces (Hardcover, Reprint 2011): Tilla Weinstein An Introduction to Lorentz Surfaces (Hardcover, Reprint 2011)
Tilla Weinstein
R4,169 Discovery Miles 41 690 Ships in 12 - 17 working days

The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)

Measure and Integration Theory (Hardcover): Heinz Bauer Measure and Integration Theory (Hardcover)
Heinz Bauer; Translated by Robert B. Burckel
R3,306 Discovery Miles 33 060 Ships in 12 - 17 working days

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2020) Mariusz Lemanczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antic, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)

Geometry and Representation Theory of Real and p-adic groups (Hardcover, 1998 ed.): Juan Tirao, David Vogan, Joe Wolf Geometry and Representation Theory of Real and p-adic groups (Hardcover, 1998 ed.)
Juan Tirao, David Vogan, Joe Wolf
R1,613 Discovery Miles 16 130 Ships in 12 - 17 working days

The representation theory of Lie groups plays a central role in both clas sical and recent developments in many parts of mathematics and physics. In August, 1995, the Fifth Workshop on Representation Theory of Lie Groups and its Applications took place at the Universidad Nacional de Cordoba in Argentina. Organized by Joseph Wolf, Nolan Wallach, Roberto Miatello, Juan Tirao, and Jorge Vargas, the workshop offered expository courses on current research, and individual lectures on more specialized topics. The present vol ume reflects the dual character of the workshop. Many of the articles will be accessible to graduate students and others entering the field. Here is a rough outline of the mathematical content. (The editors beg the indulgence of the readers for any lapses in this preface in the high standards of historical and mathematical accuracy that were imposed on the authors of the articles. ) Connections between flag varieties and representation theory for real re ductive groups have been studied for almost fifty years, from the work of Gelfand and Naimark on principal series representations to that of Beilinson and Bernstein on localization. The article of Wolf provides a detailed introduc tion to the analytic side of these developments. He describes the construction of standard tempered representations in terms of square-integrable partially harmonic forms (on certain real group orbits on a flag variety), and outlines the ingredients in the Plancherel formula. Finally, he describes recent work on the complex geometry of real group orbits on partial flag varieties."

Discontinuous Groups of Isometries in the Hyperbolic Plane (Hardcover): Werner Fenchel, Jakob Nielsen Discontinuous Groups of Isometries in the Hyperbolic Plane (Hardcover)
Werner Fenchel, Jakob Nielsen; Edited by Asmus L. Schmidt
R4,187 Discovery Miles 41 870 Ships in 12 - 17 working days

This is an introductory textbook on isometry groups of the hyperbolic plane. Interest in such groups dates back more than 120 years. Examples appear in number theory (modular groups and triangle groups), the theory of elliptic functions, and the theory of linear differential equations in the complex domain (giving rise to the alternative name Fuchsian groups). The current book is based on what became known as the famous Fenchel-Nielsen manuscript. Jakob Nielsen (1890-1959) started this project well before World War II, and his interest arose through his deep investigations on the topology of Riemann surfaces and from the fact that the fundamental group of a surface of genus greater than one is represented by such a discontinuous group. Werner Fenchel (1905-1988) joined the project later and overtook much of the preparation of the manuscript. The present book is special because of its very complete treatment of groups containing reversions and because it avoids the use of matrices to represent Moebius maps. This text is intended for students and researchers in the many areas of mathematics that involve the use of discontinuous groups.

Handbook of the History of General Topology (Hardcover, 1998 ed.): C.E. Aull, R. Lowen Handbook of the History of General Topology (Hardcover, 1998 ed.)
C.E. Aull, R. Lowen
R7,233 Discovery Miles 72 330 Ships in 12 - 17 working days

This book is the second volume of the Handbook of the History of General Topology. As was the case for the first volume, the contributions contained in it concern either individual topologists, specific schools of topology, specific periods of development, specific topics or a combination of these. The second volume focuses on the work of famous topologists, such as W. Sierpinski, K. Kuratowski (both by R. Engelkind), S. Mazurkiewicz (by R. Pol) and R.G. Bing (by M. Starbird). Furthermore, it contains articles covering Uniform, Proximinal and Nearness Concepts in Topology (by H.L. Bentley, H. Herrlich, M. Husek), Hausdorff Compactifications (by R.E. Chandler, G. Faulkner), Continua Theory (by J.J. Charatonik), Generalized Metrizable Spaces (by R.E. Hodel), Minimal Hausdorff Spaces and Maximally Connected Spaces (by J.R. Porter, R.M. Stephenson Jr.), Orderable Spaces (by S. Purisch), Developable Spaces (by S.D. Shore) and The Alexandroff-Sorgenfrey Line (by D.E. Cameron). Together with the first volume and the forthcoming volume(s) this work on the history of topology, in all its aspects, is unique, and presents important views and insights into the problems and development of topological theories and applications of topological concepts, and into the life and work of topologists. As such it will encourage not only further study in the history of the subject, but also further mathematical research in the field. It is an invaluable tool for topology researchers and topology teachers throughout the mathematical world.

Symplectic Geometry and Analytical Mechanics (Hardcover, 1987 ed.): P. Libermann, Charles-Michel Marle Symplectic Geometry and Analytical Mechanics (Hardcover, 1987 ed.)
P. Libermann, Charles-Michel Marle
R5,021 Discovery Miles 50 210 Ships in 12 - 17 working days

Approach your problems from the right end It isn't that they can't see the solution. and begin with the answers. Then one day, It is that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' Brown 'The point of a Pin'. in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thouglit to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sci ences has changed drastically in recent years: measure theory is used (non-trivially) in re gional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homo topy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces."

Math Girls 6 - The Poincare Conjecture (Hardcover): Hiroshi Yuki Math Girls 6 - The Poincare Conjecture (Hardcover)
Hiroshi Yuki; Translated by Tony Gonzalez
R837 Discovery Miles 8 370 Ships in 9 - 15 working days
Geometric Theory of Foliations (Hardcover, 1985 ed.): Cesar Camacho, Alcides Lins Neto Geometric Theory of Foliations (Hardcover, 1985 ed.)
Cesar Camacho, Alcides Lins Neto
R4,302 Discovery Miles 43 020 Ships in 12 - 17 working days

Intuitively, a foliation corresponds to a decomposition of a manifold into a union of connected, disjoint submanifolds of the same dimension, called leaves, which pile up locally like pages of a book. The theory of foliations, as it is known, began with the work of C. Ehresmann and G. Reeb, in the 1940's; however, as Reeb has himself observed, already in the last century P. Painleve saw the necessity of creating a geometric theory (of foliations) in order to better understand the problems in the study of solutions of holomorphic differential equations in the complex field. The development of the theory of foliations was however provoked by the following question about the topology of manifolds proposed by H. Hopf in the 3 1930's: "Does there exist on the Euclidean sphere S a completely integrable vector field, that is, a field X such that X* curl X * 0?" By Frobenius' theorem, this question is equivalent to the following: "Does there exist on the 3 sphere S a two-dimensional foliation?" This question was answered affirmatively by Reeb in his thesis, where he 3 presents an example of a foliation of S with the following characteristics: There exists one compact leaf homeomorphic to the two-dimensional torus, while the other leaves are homeomorphic to two-dimensional planes which accu mulate asymptotically on the compact leaf. Further, the foliation is C"".

Two-Dimensional Conformal Geometry and Vertex Operator Algebras (Hardcover, 1997 ed.): Yi-Zhi Huang Two-Dimensional Conformal Geometry and Vertex Operator Algebras (Hardcover, 1997 ed.)
Yi-Zhi Huang
R2,959 Discovery Miles 29 590 Ships in 10 - 15 working days

The theory of vertex operator algebras and their representations has been showing its power in the solution of concrete mathematical problems and in the understanding of conceptual but subtle mathematical and physical struc- tures of conformal field theories. Much of the recent progress has deep connec- tions with complex analysis and conformal geometry. Future developments, especially constructions and studies of higher-genus theories, will need a solid geometric theory of vertex operator algebras. Back in 1986, Manin already observed in [Man) that the quantum theory of (super )strings existed (in some sense) in two entirely different mathematical fields. Under canonical quantization this theory appeared to a mathematician as the representation theories of the Heisenberg, Vir as oro and affine Kac- Moody algebras and their superextensions. Quantization with the help of the Polyakov path integral led on the other hand to the analytic theory of algebraic (super ) curves and their moduli spaces, to invariants of the type of the analytic curvature, and so on. He pointed out further that establishing direct mathematical connections between these two forms of a single theory was a "big and important problem. " On the one hand, the theory of vertex operator algebras and their repre- sentations unifies (and considerably extends) the representation theories of the Heisenberg, Virasoro and Kac-Moody algebras and their superextensions.

Tensor Geometry - The Geometric Viewpoint and its Uses (Hardcover, 2nd ed. 1991. Corr. 3rd printing 2009): C.T.J. Dodson,... Tensor Geometry - The Geometric Viewpoint and its Uses (Hardcover, 2nd ed. 1991. Corr. 3rd printing 2009)
C.T.J. Dodson, Timothy Poston
R3,649 Discovery Miles 36 490 Ships in 12 - 17 working days

This treatment of differential geometry and the mathematics required for general relativity makes the subject of this book accessible for the first time to anyone familiar with elementary calculus in one variable and with a knowledge of some vector algebra. The emphasis throughout is on the geometry of the mathematics, which is greatly enhanced by the many illustrations presenting figures of three and more dimensions as closely as book form will allow. The imaginative text is a major contribution to expounding the subject of differential geometry as applied to studies in relativity, and will prove of interest to a large number of mathematicians and physicists. Review from L'Enseignement Mathématique

Multiple-Time-Scale Dynamical Systems (Hardcover, 2001 ed.): Christopher K.R.T. Jones, Alexander I. Khibnik Multiple-Time-Scale Dynamical Systems (Hardcover, 2001 ed.)
Christopher K.R.T. Jones, Alexander I. Khibnik
R4,322 Discovery Miles 43 220 Ships in 12 - 17 working days

Systems with sub-processes evolving on many different time scales are ubiquitous in applications: chemical reactions, electro-optical and neuro-biological systems, to name just a few. This volume contains papers that expose the state of the art in mathematical techniques for analyzing such systems. Recently developed geometric ideas are highlighted in this work that includes a theory of relaxation-oscillation phenomena in higher dimensional phase spaces. Subtle exponentially small effects result from singular perturbations implicit in certain multiple time scale systems. Their role in the slow motion of fronts, bifurcations, and jumping between invariant tori are all explored here. Neurobiology has played a particularly stimulating role in the development of these techniques and one paper is directed specifically at applying geometric singular perturbation theory to reveal the synchrony in networks of neural oscillators.

Topological Vector Spaces (Hardcover, 2nd ed. 1999): M. P. Wolff Topological Vector Spaces (Hardcover, 2nd ed. 1999)
M. P. Wolff; H. H Schaefer
R3,000 Discovery Miles 30 000 Ships in 10 - 15 working days

Intended as a systematic text on topological vector spaces, this text assumes familiarity with the elements of general topology and linear algebra. Similarly, the elementary facts on Hilbert and Banach spaces are not discussed in detail here, since the book is mainly addressed to those readers who wish to go beyond the introductory level. Each of the chapters is preceded by an introduction and followed by exercises, which in turn are devoted to further results and supplements, in particular, to examples and counter-examples, and hints have been given where appropriate. This second edition has been thoroughly revised and includes a new chapter on C DEGREES* and W DEGR

Geometry, Topology and Physics (Paperback, 2nd edition): Mikio Nakahara Geometry, Topology and Physics (Paperback, 2nd edition)
Mikio Nakahara
R2,510 Discovery Miles 25 100 Ships in 12 - 17 working days

Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.

Heights of Polynomials and Entropy in Algebraic Dynamics (Hardcover, 1999 ed.): Graham Everest, Thomas Ward Heights of Polynomials and Entropy in Algebraic Dynamics (Hardcover, 1999 ed.)
Graham Everest, Thomas Ward
R1,584 Discovery Miles 15 840 Ships in 12 - 17 working days

The main theme of this book is the theory of heights as they appear in various guises. This includes a large body of results on Mahlers measure of the height of a polynomial. The authors'approach is very down to earth as they cover the rationals, assuming no prior knowledge of elliptic curves. The chapters include examples and particular computations, with all special calculation included so as to be self-contained. The authors devote space to discussing Mahlers measure and to giving some convincing and original examples to explain this phenomenon. XXXXXXX NEUER TEXT The main theme of this book is the theory of heights as it appears in various guises. To this End.txt.Int.:, it examines the results of Mahlers measure of the height of a polynomial, which have never before appeared in book form. The authors take a down-to-earth approach that includes convincing and original examples. The book uncovers new and interesting connections between number theory and dynamics and will be interesting to researchers in both number theory and nonlinear dynamics."

Apartness and Uniformity - A Constructive Development (Hardcover, 2011): Douglas S. Bridges, Luminita Simona Vita Apartness and Uniformity - A Constructive Development (Hardcover, 2011)
Douglas S. Bridges, Luminita Simona Vita
R2,795 Discovery Miles 27 950 Ships in 10 - 15 working days

The theory presented in this book is developed constructively, is based on a few axioms encapsulating the notion of objects (points and sets) being apart, and encompasses both point-set topology and the theory of uniform spaces. While the classical-logic-based theory of proximity spaces provides some guidance for the theory of apartness, the notion of nearness/proximity does not embody enough algorithmic information for a deep constructive development. The use of constructive (intuitionistic) logic in this book requires much more technical ingenuity than one finds in classical proximity theory - algorithmic information does not come cheaply - but it often reveals distinctions that are rendered invisible by classical logic.

In the first chapter the authors outline informal constructive logic and set theory, and, briefly, the basic notions and notations for metric and topological spaces. In the second they introduce axioms for a point-set apartness and then explore some of the consequences of those axioms. In particular, they examine a natural topology associated with an apartness space, and relations between various types of continuity of mappings. In the third chapter the authors extend the notion of point-set (pre-)apartness axiomatically to one of (pre-)apartness between subsets of an inhabited set. They then provide axioms for a quasiuniform space, perhaps the most important type of set-set apartness space. Quasiuniform spaces play a major role in the remainder of the chapter, which covers such topics as the connection between uniform and strong continuity (arguably the most technically difficult part of the book), apartness and convergence in function spaces, types of completeness, and neat compactness. Each chapter has a Notes section, in which are found comments on the definitions, results, and proofs, as well as occasional pointers to future work. The book ends with a Postlude that refers to other constructive approaches to topology, with emphasis on the relation between apartness spaces and formal topology.

Largely an exposition of the authors' own research, this is the first book dealing with the apartness approach to constructive topology, and is a valuable addition to the literature on constructive mathematics and on topology in computer science. It is aimed at graduate students and advanced researchers in theoretical computer science, mathematics, and logic who are interested in constructive/algorithmic aspects of topology.

Largely an exposition of the authors' own research, this is the first book dealing with the apartness approach to constructive topology, and is a valuable addition to the literature on constructive mathematics and on topology in computer science. It is aimed at graduate students and advanced researchers in theoretical computer science, mathematics, and logic who are interested in constructive/algorithmic aspects of topology.

Invariant Manifolds and Fibrations for Perturbed Nonlinear Schroedinger Equations (Hardcover, 1997 ed.): Charles Li, Stephen... Invariant Manifolds and Fibrations for Perturbed Nonlinear Schroedinger Equations (Hardcover, 1997 ed.)
Charles Li, Stephen Wiggins
R1,572 Discovery Miles 15 720 Ships in 10 - 15 working days

In this monograph the authors present detailed and pedagogic proofs of persistence theorems for normally hyperbolic invariant manifolds and their stable and unstable manifolds for classes of perturbations of the NLS equation, as well as for the existence and persistence of fibrations of these invariant manifolds. Their techniques are based on an infinite dimensional generalisation of the graph transform and can be viewed as an infinite dimensional generalisation of Fenichels results. As such, they may be applied to a broad class of infinite dimensional dynamical systems.

Research Directions in Symplectic and Contact Geometry and Topology (Hardcover, 1st ed. 2021): Bahar Acu, Catherine Cannizzo,... Research Directions in Symplectic and Contact Geometry and Topology (Hardcover, 1st ed. 2021)
Bahar Acu, Catherine Cannizzo, Dusa McDuff, Ziva Myer, Yu Pan, …
R2,139 R1,521 Discovery Miles 15 210 Save R618 (29%) Ships in 12 - 17 working days

This book highlights a number of recent research advances in the field of symplectic and contact geometry and topology, and related areas in low-dimensional topology. This field has experienced significant and exciting growth in the past few decades, and this volume provides an accessible introduction into many active research problems in this area. The papers were written with a broad audience in mind so as to reach a wide range of mathematicians at various levels. Aside from teaching readers about developing research areas, this book will inspire researchers to ask further questions to continue to advance the field. The volume contains both original results and survey articles, presenting the results of collaborative research on a wide range of topics. These projects began at the Research Collaboration Conference for Women in Symplectic and Contact Geometry and Topology (WiSCon) in July 2019 at ICERM, Brown University. Each group of authors included female and nonbinary mathematicians at different career levels in mathematics and with varying areas of expertise. This paved the way for new connections between mathematicians at all career levels, spanning multiple continents, and resulted in the new collaborations and directions that are featured in this work.

Banach Space Theory - The Basis for Linear and Nonlinear Analysis (Hardcover, 2011 ed.): Marian Fabian, Petr Habala, Petr... Banach Space Theory - The Basis for Linear and Nonlinear Analysis (Hardcover, 2011 ed.)
Marian Fabian, Petr Habala, Petr Hajek, Vicente Montesinos, Vaclav Zizler
R3,806 Discovery Miles 38 060 Ships in 12 - 17 working days

Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory. Key Features: - Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory - Covers Radon-Nikodym property, finite-dimensional spaces and local theory on tensor products - Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more - Includes information about further topics and directions of research and some open problems at the end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.

Lectures on the Geometry of Numbers (Hardcover, 1989 ed.): Komaravolu Chandrasekharan Lectures on the Geometry of Numbers (Hardcover, 1989 ed.)
Komaravolu Chandrasekharan; Carl Ludwig Siegel; Assisted by Rudolf Suter, B. Friedman
R1,565 Discovery Miles 15 650 Ships in 10 - 15 working days

Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm. It is of interest to the aspiring as well as the established mathematician, with its unique blend of arithmetic, algebra, geometry, and analysis, and its easy readability.

Topological Methods in Data Analysis and Visualization - Theory, Algorithms, and Applications (Hardcover, Edition.): Valerio... Topological Methods in Data Analysis and Visualization - Theory, Algorithms, and Applications (Hardcover, Edition.)
Valerio Pascucci, Xavier Tricoche, Hans Hagen, Julien Tierny
R2,836 Discovery Miles 28 360 Ships in 10 - 15 working days

Topology-based methods are of increasing importance in the analysis and visualization of dataset from a wide variety of scientific domains such as biology, physics, engineering, and medicine. Current challenges of topology-based techniques include the management of time-dependent data, the representation large and complex datasets, the characterization of noise and uncertainty, the effective integration of numerical methods with robust combinatorial algorithms, etc. (see also below for a list of selected issues). While there is an increasing number of high-quality publications in this field, many fundamental questions remain unsolved. New focused efforts are needed in a variety of techniques ranging from the theoretical foundations of topological models, algorithmic issues related to the representation power of computer-based implementations as well as their computational efficiency, user interfaces for presentation of quantitative topological information, and the development of new techniques for systematic mapping of science problems in topological constructs that can be solved computationally. In this forum the editors have brought together the most prominent and best recognized researchers in the field of topology-based data analysis and visualization for a joint discussion and scientific exchange of the latest results in the field. The 2009 workshop in Snowbird, Utah, follows the two successful workshops in 2005 (Budmerice, Slovakia) and 2007 (Leipzig, Germany).

Topological Data Analysis for Scientific Visualization (Hardcover, 1st ed. 2017): Julien Tierny Topological Data Analysis for Scientific Visualization (Hardcover, 1st ed. 2017)
Julien Tierny
R3,618 Discovery Miles 36 180 Ships in 12 - 17 working days

Combining theoretical and practical aspects of topology, this book provides a comprehensive and self-contained introduction to topological methods for the analysis and visualization of scientific data. Theoretical concepts are presented in a painstaking but intuitive manner, with numerous high-quality color illustrations. Key algorithms for the computation and simplification of topological data representations are described in detail, and their application is carefully demonstrated in a chapter dedicated to concrete use cases. With its fine balance between theory and practice, "Topological Data Analysis for Scientific Visualization" constitutes an appealing introduction to the increasingly important topic of topological data analysis for lecturers, students and researchers.

Handbook of Geometry and Topology of Singularities III (Hardcover, 1st ed. 2022): Jose Luis Cisneros-Molina, Le Dung Trang,... Handbook of Geometry and Topology of Singularities III (Hardcover, 1st ed. 2022)
Jose Luis Cisneros-Molina, Le Dung Trang, Jose Seade
R6,570 Discovery Miles 65 700 Ships in 12 - 17 working days

This is the third volume of the Handbook of Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state of the art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of various important aspects of singularity theory. Some of these complement topics previously explored in volumes I and II, such as, for instance, Zariski's equisingularity, the interplay between isolated complex surface singularities and 3-manifold theory, stratified Morse theory, constructible sheaves, the topology of the non-critical levels of holomorphic functions, and intersection cohomology. Other chapters bring in new subjects, such as the Thom-Mather theory for maps, characteristic classes for singular varieties, mixed Hodge structures, residues in complex analytic varieties, nearby and vanishing cycles, and more. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.

General Inequalities 7 - 7th International Conference at Oberwolfach, November 13-18, 1995 (Hardcover, 1997 ed.): Catherine... General Inequalities 7 - 7th International Conference at Oberwolfach, November 13-18, 1995 (Hardcover, 1997 ed.)
Catherine Bandle, William N. Everitt, Laszlo Losonczi, Wolfgang Walter
R3,030 Discovery Miles 30 300 Ships in 10 - 15 working days

Inequalities continue to play an essential role in mathematics. The subject is per haps the last field that is comprehended and used by mathematicians working in all the areas of the discipline of mathematics. Since the seminal work Inequalities (1934) of Hardy, Littlewood and P6lya mathematicians have laboured to extend and sharpen the earlier classical inequalities. New inequalities are discovered ev ery year, some for their intrinsic interest whilst others flow from results obtained in various branches of mathematics. So extensive are these developments that a new mathematical periodical devoted exclusively to inequalities will soon appear; this is the Journal of Inequalities and Applications, to be edited by R. P. Agar wal. Nowadays it is difficult to follow all these developments and because of lack of communication between different groups of specialists many results are often rediscovered several times. Surveys of the present state of the art are therefore in dispensable not only to mathematicians but to the scientific community at large. The study of inequalities reflects the many and various aspects of mathemat ics. There is on the one hand the systematic search for the basic principles and the study of inequalities for their own sake. On the other hand the subject is a source of ingenious ideas and methods that give rise to seemingly elementary but nevertheless serious and challenging problems. There are many applications in a wide variety of fields from mathematical physics to biology and economics."

Many Valued Topology and its Applications (Hardcover, 2001 ed.): Ulrich Hoehle Many Valued Topology and its Applications (Hardcover, 2001 ed.)
Ulrich Hoehle
R3,016 Discovery Miles 30 160 Ships in 10 - 15 working days

The 20th Century brought the rise of General Topology. It arose from the effort to establish a solid base for Analysis and it is intimately related to the success of set theory. Many Valued Topology and Its Applications seeks to extend the field by taking the monadic axioms of general topology seriously and continuing the theory of topological spaces as topological space objects within an almost completely ordered monad in a given base category C. The richness of this theory is shown by the fundamental fact that the category of topological space objects in a complete and cocomplete (epi, extremal mono)-category C is topological over C in the sense of J. Adamek, H. Herrlich, and G.E. Strecker. Moreover, a careful, categorical study of the most important topological notions and concepts is given - e.g., density, closedness of extremal subobjects, Hausdorff's separation axiom, regularity, and compactness. An interpretation of these structures, not only by the ordinary filter monad, but also by many valued filter monads, underlines the richness of the explained theory and gives rise to new concrete concepts of topological spaces - so-called many valued topological spaces. Hence, many valued topological spaces play a significant role in various fields of mathematics - e.g., in the theory of locales, convergence spaces, stochastic processes, and smooth Borel probability measures. In its first part, the book develops the necessary categorical basis for general topology. In the second part, the previously given categorical concepts are applied to monadic settings determined by many valued filter monads. The third part comprises various applications of many valued topologies to probability theory and statistics as well as to non-classical model theory. These applications illustrate the significance of many valued topology for further research work in these important fields.

Math and Art - An Introduction to Visual Mathematics (Paperback, 2nd edition): Sasho Kalajdzievski Math and Art - An Introduction to Visual Mathematics (Paperback, 2nd edition)
Sasho Kalajdzievski
R1,778 Discovery Miles 17 780 Ships in 12 - 17 working days

Features Provides an accessible introduction to mathematics in art Supports the narrative with a self-contained mathematical theory, with complete proofs of the main results (including the classification theorem for similarities) Presents hundreds of figures, illustrations, computer-generated graphics, designs, photographs, and art reproductions, mainly presented in full color Includes 21 projects and about 280 exercises, about half of which are fully solved Covers Euclidean geometry, golden section, Fibonacci numbers, symmetries, tilings, similarities, fractals, cellular automata, inversion, hyperbolic geometry, perspective drawing, Platonic and Archimedean solids, and topology New to the Second Edition New exercises, projects and artworks Revised, reorganised and expanded chapters More use of color throughout

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Advances in Metric Fixed Point Theory…
Yeol Je Cho, Mohamed Jleli, … Hardcover R3,605 Discovery Miles 36 050
Topology-Based Modeling of Textile…
Yordan Kyosev Hardcover R2,984 Discovery Miles 29 840
The Four-Color Theorem - History…
Rudolf Fritsch, Gerda Fritsch Hardcover R2,408 Discovery Miles 24 080
Advances in Topology and Their…
Santanu Acharjee Hardcover R3,614 Discovery Miles 36 140
Math Girls 6 - The Poincare Conjecture
Hiroshi Yuki Hardcover R843 Discovery Miles 8 430
Image Processing with Cellular Topology
Vladimir Kovalevsky Hardcover R3,617 Discovery Miles 36 170
Stereotype Spaces and Algebras
Sergei S. Akbarov Hardcover R6,461 Discovery Miles 64 610
Advances in Mathematical Sciences - AWM…
Bahar Acu, Donatella Danielli, … Hardcover R1,525 Discovery Miles 15 250
Crossed Modules
Friedrich Wagemann Hardcover R4,749 Discovery Miles 47 490
Topology - Pearson New International…
James Munkres Paperback R2,219 Discovery Miles 22 190

 

Partners