![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology > General
'The book is well written, and there is a welcome breadth in the choice of topics. I think this book is a valuable resource. Students who meticulously work through all the problems in the book in an intelligent way, will surely gain considerable insight into the subject; teachers who donaEURO (TM)t tell their students about it will find it a valuable source for exam questions.'The Mathematical GazetteThe book offers a good introduction to topology through solved exercises. It is mainly intended for undergraduate students. Most exercises are given with detailed solutions.In the second edition, some significant changes have been made, other than the additional exercises. There are also additional proofs (as exercises) of many results in the old section 'What You Need To Know', which has been improved and renamed in the new edition as 'Essential Background'. Indeed, it has been considerably beefed up as it now includes more remarks and results for readers' convenience. The interesting sections 'True or False' and 'Tests' have remained as they were, apart from a very few changes.
This book is intended as an introduction to classical Fourier analysis, Fourier series, and the Fourier transform. The topics are developed slowly for the reader who has never seen them before, with a preference for clarity of exposition in stating and proving results. More recent developments, such as the discrete and fast Fourier transforms and wavelets, are covered in the last two chapters. The first three, short, chapters present requisite background material, and these could be read as a short course in functional analysis. The text includes many historical notes to place the material in a cultural and mathematical context; from the fact that Jean Baptiste Joseph Fourier was the nineteenth, but not the last, child in his family to the impact that Fourier series have had on the evolution of the concept of the integral.
The aim of this book is to serve both as an introduction to profinite groups and as a reference for specialists in some areas of the theory. The book is reasonably self-contained. Profinite groups are Galois groups. As such they are of interest in algebraic number theory. Much of recent research on abstract infinite groups is related to profinite groups because residually finite groups are naturally embedded in a profinite group. In addition to basic facts about general profinite groups, the book emphasizes free constructions (particularly free profinite groups and the structure of their subgroups). Homology and cohomology is described with a minimum of prerequisites. This second edition contains three new appendices dealing with a new characterization of free profinite groups, presentations of pro-p groups and a new conceptually simpler approach to the proof of some classical subgroup theorems. Throughout the text there are additions in the form of new results, improved proofs, typographical corrections, and an enlarged bibliography. The list of open questions has been updated; comments and references have been added about those previously open problems that have been solved after the first edition appeared.
Spaces of constant curvature, i.e. Euclidean space, the sphere, and Loba chevskij space, occupy a special place in geometry. They are most accessible to our geometric intuition, making it possible to develop elementary geometry in a way very similar to that used to create the geometry we learned at school. However, since its basic notions can be interpreted in different ways, this geometry can be applied to objects other than the conventional physical space, the original source of our geometric intuition. Euclidean geometry has for a long time been deeply rooted in the human mind. The same is true of spherical geometry, since a sphere can naturally be embedded into a Euclidean space. Lobachevskij geometry, which in the first fifty years after its discovery had been regarded only as a logically feasible by-product appearing in the investigation of the foundations of geometry, has even now, despite the fact that it has found its use in numerous applications, preserved a kind of exotic and even romantic element. This may probably be explained by the permanent cultural and historical impact which the proof of the independence of the Fifth Postulate had on human thought."
The techniques and concepts of modern algebra are introduced for their natural role in the study of projectile geometry; groups appear as automorphism groups of configurations, division rings appear in the study of Desargues' theorem and the study of the independence of the seven axioms given for projectile geometry.
This book consists of five chapters presenting problems of current research in mathematics, with its history and development, current state, and possible future direction. Four of the chapters are expository in nature while one is based more directly on research. All deal with important areas of mathematics, however, such as algebraic geometry, topology, partial differential equations, Riemannian geometry, and harmonic analysis. This book is addressed to researchers who are interested in those subject areas. Young-Hoon Kiem discusses classical enumerative geometry before string theory and improvements after string theory as well as some recent advances in quantum singularity theory, Donaldson-Thomas theory for Calabi-Yau 4-folds, and Vafa-Witten invariants. Dongho Chae discusses the finite-time singularity problem for three-dimensional incompressible Euler equations. He presents Kato's classical local well-posedness results, Beale-Kato-Majda's blow-up criterion, and recent studies on the singularity problem for the 2D Boussinesq equations. Simon Brendle discusses recent developments that have led to a complete classification of all the singularity models in a three-dimensional Riemannian manifold. He gives an alternative proof of the classification of noncollapsed steady gradient Ricci solitons in dimension 3. Hyeonbae Kang reviews some of the developments in the Neumann-Poincare operator (NPO). His topics include visibility and invisibility via polarization tensors, the decay rate of eigenvalues and surface localization of plasmon, singular geometry and the essential spectrum, analysis of stress, and the structure of the elastic NPO. Danny Calegari provides an explicit description of the shift locus as a complex of spaces over a contractible building. He describes the pieces in terms of dynamically extended laminations and of certain explicit "discriminant-like" affine algebraic varieties.
This textbook is an alternative to a classical introductory book in point-set topology. The approach, however, is radically different from the classical one. It is based on convergence rather than on open and closed sets. Convergence of filters is a natural generalization of the basic and well-known concept of convergence of sequences, so that convergence theory is more natural and intuitive to many, perhaps most, students than classical topology. On the other hand, the framework of convergence is easier, more powerful and far-reaching which highlights a need for a theory of convergence in various branches of analysis.Convergence theory for filters is gradually introduced and systematically developed. Topological spaces are presented as a special subclass of convergence spaces of particular interest, but a large part of the material usually developed in a topology textbook is treated in the larger realm of convergence spaces.
This textbook is an alternative to a classical introductory book in point-set topology. The approach, however, is radically different from the classical one. It is based on convergence rather than on open and closed sets. Convergence of filters is a natural generalization of the basic and well-known concept of convergence of sequences, so that convergence theory is more natural and intuitive to many, perhaps most, students than classical topology. On the other hand, the framework of convergence is easier, more powerful and far-reaching which highlights a need for a theory of convergence in various branches of analysis.Convergence theory for filters is gradually introduced and systematically developed. Topological spaces are presented as a special subclass of convergence spaces of particular interest, but a large part of the material usually developed in a topology textbook is treated in the larger realm of convergence spaces.
This book is part of the series of three books arise from lectures organized by Hitoshi Murakami at RIMS, Kyoto University in the summer of 2001. The lecture series was aimed at a broad audience that included many graduate students. Its purpose lay in familiarizing the audience with the basics of 3-manifold theory and introducing some topics of current research. The first portion of the lecture series was devoted to standard topics in the theory of 3-manifolds. The middle portion was devoted to a brief study of Heegaard splittings and generalized Heegaard splittings.In the standard schematic diagram for generalized Heegaard splittings, Heegaard splittings are stacked on top of each other in a linear fashion. This can cause confusion in those cases in which generalized Heegaard splittings possess interesting connectivity properties. Fork complexes were invented in an effort to illuminate some of the more subtle issues arising in the study of generalized Heegaard splittings.
This book provides an introduction to the beautiful and deep subject of filling Dehn surfaces in the study of topological 3-manifolds. This book presents, for the first time in English and with all the details, the results from the PhD thesis of the first author, together with some more recent results in the subject. It also presents some key ideas on how these techniques could be used on other subjects.Representing 3-Manifolds by Filling Dehn Surfaces is mostly self-contained requiring only basic knowledge on topology and homotopy theory. The complete and detailed proofs are illustrated with a set of more than 600 spectacular pictures, in the tradition of low-dimensional topology books. It is a basic reference for researchers in the area, but it can also be used as an advanced textbook for graduate students or even for adventurous undergraduates in mathematics. The book uses topological and combinatorial tools developed throughout the twentieth century making the volume a trip along the history of low-dimensional topology.
The study of triangulations of topological spaces has always been at the root of geometric topology. Among the most studied triangulations are piecewise linear triangulations of high-dimensional topological manifolds. Their study culminated in the late 1960s-early 1970s in a complete classification in the work of Kirby and Siebenmann. It is this classification that we discuss in this book, including the celebrated Hauptvermutung and Triangulation Conjecture.The goal of this book is to provide a readable and well-organized exposition of the subject, which would be suitable for advanced graduate students in topology. An exposition like this is currently lacking.
Combinatorics as a branch of mathematics studies the arts of counting. Enumeration occupies the foundation of combinatorics with a large range of applications not only in mathematics itself but also in many other disciplines. It is too broad a task to write a book to show the deep development in every corner from this aspect. This monograph is intended to provide a unified theory for those related to the enumeration of maps. For enumerating maps the first thing we have to know is the sym metry of a map. Or in other words, we have to know its automorphism group. In general, this is an interesting, complicated, and difficult problem. In order to do this, the first problem we meet is how to make a map considered without symmetry. Since the beginning of sixties when Tutte found a way of rooting on a map, the problem has been solved. This forms the basis of the enumerative theory of maps. As soon as the problem without considering the symmetry is solved for one kind of map, the general problem with symmetry can always, in principle, be solved from what we have known about the automorphism of a polyhedron, a synonym for a map, which can be determined efficiently according to another monograph of the present author Liu58]."
The Only Undergraduate Textbook to Teach Both Classical and Virtual Knot Theory An Invitation to Knot Theory: Virtual and Classical gives advanced undergraduate students a gentle introduction to the field of virtual knot theory and mathematical research. It provides the foundation for students to research knot theory and read journal articles on their own. Each chapter includes numerous examples, problems, projects, and suggested readings from research papers. The proofs are written as simply as possible using combinatorial approaches, equivalence classes, and linear algebra. The text begins with an introduction to virtual knots and counted invariants. It then covers the normalized f-polynomial (Jones polynomial) and other skein invariants before discussing algebraic invariants, such as the quandle and biquandle. The book concludes with two applications of virtual knots: textiles and quantum computation.
A consistent and near complete survey of the important progress made in the field over the last few years, with the main emphasis on the rigidity method and its applications. Among others, this monograph presents the most successful existence theorems known and construction methods for Galois extensions as well as solutions for embedding problems combined with a collection of the existing Galois realizations.
The book explains concepts and ideas of mathematics and physics that are relevant for advanced students and researchers of condensed matter physics. With this aim, a brief intuitive introduction to many-body theory is given as a powerful qualitative tool for understanding complex systems. The important emergent concept of a quasiparticle is then introduced as a way to reduce a many-body problem to a single particle quantum problem. Examples of quasiparticles in graphene, superconductors, superfluids and in a topological insulator on a superconductor are discussed.The mathematical idea of self-adjoint extension, which allows short distance information to be included in an effective long distance theory through boundary conditions, is introduced through simple examples and then applied extensively to analyse and predict new physical consequences for graphene.The mathematical discipline of topology is introduced in an intuitive way and is then combined with the methods of differential geometry to show how the emergence of gapless states can be understood. Practical ways of carrying out topological calculations are described.
Introduces new and advanced methods of model discovery for time-series data using artificial intelligence. Implements topological approaches to distill "machine-intuitive" models from complex dynamics data. Introduces a new paradigm for a parsimonious model of a dynamical system without resorting to differential equations. Heralds a new era in data-driven science and engineering based on the operational concept of "computational intuition".
The concept of symmetric space is of central importance in many branches of mathematics. Compactifications of these spaces have been studied from the points of view of representation theory, geometry, and random walks. This work is devoted to the study of the interrelationships among these various compactifications and, in particular, focuses on the martin compactifications. It is the first exposition to treat compactifications of symmetric spaces systematically and to uniformized the various points of view. Key features: * definition and detailed analysis of the Martin compactifications * new geometric Compactification, defined in terms of the Tits building, that coincides with the Martin Compactification at the bottom of the positive spectrum. * geometric, non-inductive, description of the Karpelevic Compactification * study of the well-know isomorphism between the Satake compactifications and the Furstenberg compactifications * systematic and clear progression of topics from geometry to analysis, and finally to random walks The work is largely self-contained, with comprehensive references to the literature. It is an excellent resource for both researchers and graduate students.
This book consists of a selection of articles devoted to new ideas and developments in low dimensional topology. Low dimensions refer to dimensions three and four for the topology of manifolds and their submanifolds. Thus we have papers related to both manifolds and to knotted submanifolds of dimension one in three (classical knot theory) and two in four (surfaces in four dimensional spaces). Some of the work involves virtual knot theory where the knots are abstractions of classical knots but can be represented by knots embedded in surfaces. This leads both to new interactions with classical topology and to new interactions with essential combinatorics.
A traditional approach to developing multivariate statistical theory is algebraic. Sets of observations are represented by matrices, linear combinations are formed from these matrices by multiplying them by coefficient matrices, and useful statistics are found by imposing various criteria of optimization on these combinations. Matrix algebra is the vehicle for these calculations. A second approach is computational. Since many users find that they do not need to know the mathematical basis of the techniques as long as they have a way to transform data into results, the computation can be done by a package of computer programs that somebody else has written. An approach from this perspective emphasizes how the computer packages are used, and is usually coupled with rules that allow one to extract the most important numbers from the output and interpret them. Useful as both approaches are--particularly when combined--they can overlook an important aspect of multivariate analysis. To apply it correctly, one needs a way to conceptualize the multivariate relationships that exist among variables. This book is designed to help the reader develop a way of thinking about multivariate statistics, as well as to understand in a broader and more intuitive sense what the procedures do and how their results are interpreted. Presenting important procedures of multivariate statistical theory geometrically, the author hopes that this emphasis on the geometry will give the reader a coherent picture into which all the multivariate techniques fit.
A selection of topics which graduate students have found to be a successful introduction to the field, employing three distinct techniques: geometric topology manoeuvres, combinatorics, and algebraic topology. Each topic is developed until significant results are achieved and each chapter ends with exercises and brief accounts of the latest research. What may reasonably be referred to as knot theory has expanded enormously over the last decade and, while the author describes important discoveries throughout the twentieth century, the latest discoveries such as quantum invariants of 3-manifolds as well as generalisations and applications of the Jones polynomial are also included, presented in an easily intelligible style. Readers are assumed to have knowledge of the basic ideas of the fundamental group and simple homology theory, although explanations throughout the text are numerous and well-done. Written by an internationally known expert in the field, this will appeal to graduate students, mathematicians and physicists with a mathematical background wishing to gain new insights in this area.
This book presents the relationship between classical theta functions and knots. It is based on a novel idea of Razvan Gelca and Alejandro Uribe, which converts Weil's representation of the Heisenberg group on theta functions to a knot theoretical framework, by giving a topological interpretation to a certain induced representation. It also explains how the discrete Fourier transform can be related to 3- and 4-dimensional topology.Theta Functions and Knots can be read in two perspectives. Readers with an interest in theta functions or knot theory can learn how the two are related. Those interested in Chern-Simons theory will find here an introduction using the simplest case, that of abelian Chern-Simons theory. Moreover, the construction of abelian Chern-Simons theory is based entirely on quantum mechanics and not on quantum field theory as it is usually done.Both the theory of theta functions and low dimensional topology are presented in detail, in order to underline how deep the connection between these two fundamental mathematical subjects is. Hence the book is self-contained with a unified presentation. It is suitable for an advanced graduate course, as well as for self-study.
This book provides a modern introduction to harmonic analysis and synthesis on topological groups. It serves as a guide to the abstract theory of Fourier transformation. For the first time, it presents a detailed account of the theory of classical harmonic analysis together with the recent developments in spectral analysis and synthesis.
A phenomenon which appears in nature, or human behavior, can sometimes be explained by saying that a certain potential function is maximized, or minimized. For example, the Hamiltonian mechanics, soapy films, size of an atom, business management, etc. In mathematics, a point where a given function attains an extreme value is called a critical point, or a singular point. The purpose of singularity theory is to explore the properties of singular points of functions and mappings.This is a volume on the proceedings of the fourth Japanese-Australian Workshop on Real and Complex Singularities held in Kobe, Japan. It consists of 11 original articles on singularities. Readers will be introduced to some important new notions for characterizations of singularities and several interesting results are delivered. In addition, current approaches to classical topics and state-of-the-art effective computational methods of invariants of singularities are also presented. This volume will be useful not only to the singularity theory specialists but also to general mathematicians.
|
You may like...
The Complete Hitchhiker's Guide to the…
Douglas Adams
Paperback
|