![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Topology > General
Focuses on the latest research in Graph Theory Provides recent research findings that are occurring in this field Discusses the advanced developments and gives insights on an international and transnational level Identifies the gaps in the results Presents forthcoming international studies and researches, long with applications in Networking, Computer Science, Chemistry, Biological Sciences, etc.
In the last few years the use of geometrie methods has permeated many more branehes of mathematies and the seiences. Briefly its role may be eharaeterized as folIows. Whereas methods of mathematieal analysis deseribe phenomena 'in the sm all " geometrie methods eontribute to giving the picture 'in the large'. A seeond no less important property of geometrie methods is the eonvenienee of using its language to deseribe and give qualitative explanations for diverse mathematieal phenomena and patterns. From this point of view, the theory of veetor bundles together with mathematieal analysis on manifolds (global anal- ysis and differential geometry) has provided a major stimulus. Its language turned out to be extremely fruitful: connections on prineipal veetor bundles (in terms of whieh various field theories are deseribed), transformation groups including the various symmetry groups that arise in eonneetion with physieal problems, in asymptotie methods of partial differential equations with small parameter, in elliptie operator theory, in mathematieal methods of classieal meehanies and in mathematieal methods in eeonomies. There are other eur- rently less signifieant applieations in other fields. Over a similar period, uni- versity edueation has ehanged eonsiderably with the appearanee of new courses on differential geometry and topology. New textbooks have been published but 'geometry and topology' has not, in our opinion, been wen eovered from a prae- tieal applieations point of view.
In this richly illustrated book, the contributors describe the Mereon Matrix, its dynamic geometry and topology. Through the definition of eleven First Principles, it offers a new perspective on dynamic, whole and sustainable systems that may serve as a template information model. This template has been applied to a set of knowledge domains for verification purposes: pre-life-evolution, human molecular genetics and biological evolution, as well as one social application on classroom management.The importance of the book comes in the following ways:
This book aims to provide undergraduates with an understanding of geometric topology. Topics covered include a sampling from point-set, geometric, and algebraic topology. The presentation is pragmatic, avoiding the famous pedagogical method "whereby one begins with the general and proceeds to the particular only after the student is too confused to understand it." Exercises are an integral part of the text. Students taking the course should have some knowledge of linear algebra. An appendix provides a brief survey of the necessary background of group theory.
This proceedings volume presents a diverse collection of high-quality, state-of-the-art research and survey articles written by top experts in low-dimensional topology and its applications. The focal topics include the wide range of historical and contemporary invariants of knots and links and related topics such as three- and four-dimensional manifolds, braids, virtual knot theory, quantum invariants, braids, skein modules and knot algebras, link homology, quandles and their homology; hyperbolic knots and geometric structures of three-dimensional manifolds; the mechanism of topological surgery in physical processes, knots in Nature in the sense of physical knots with applications to polymers, DNA enzyme mechanisms, and protein structure and function. The contents is based on contributions presented at the International Conference on Knots, Low-Dimensional Topology and Applications - Knots in Hellas 2016, which was held at the International Olympic Academy in Greece in July 2016. The goal of the international conference was to promote the exchange of methods and ideas across disciplines and generations, from graduate students to senior researchers, and to explore fundamental research problems in the broad fields of knot theory and low-dimensional topology. This book will benefit all researchers who wish to take their research in new directions, to learn about new tools and methods, and to discover relevant and recent literature for future study.
This book is an introduction to the theory of calculus in the style of inquiry-based learning. The text guides students through the process of making mathematical ideas rigorous, from investigations and problems to definitions and proofs. The format allows for various levels of rigour as negotiated between instructor and students, and the text can be of use in a theoretically oriented calculus course or an analysis course that develops rigor gradually. Material on topology (e.g. of higher dimensional Euclidean spaces) and discrete dynamical systems can be used as excursions within a study of analysis or as a more central component of a course. The themes of bisection, iteration, and nested intervals form a common thread throughout the text. The book is intended for students who have studied some calculus and want to gain a deeper understanding of the subject through an inquiry-based approach.
This volume consists of introductory lectures on the topics in the new and rapidly developing area of toric homotopy theory, and its applications to the current research in configuration spaces and braids, as well as to more applicable mathematics such as fr-codes and robot motion planning.The book starts intertwining homotopy theoretical and combinatorial ideas within the remits of toric topology and illustrates an attempt to classify in a combinatorial way polytopes known as fullerenes, which are important objects in quantum physics, quantum chemistry and nanotechnology. Toric homotopy theory is then introduced as a further development of toric topology, which describes properties of Davis-Januszkiewicz spaces, moment-angle complexes and their generalizations to polyhedral products. The book also displays the current research on configuration spaces, braids, the theory of limits over the category of presentations and the theory of fr-codes. As an application to robotics, the book surveys topological problems relevant to the motion planning problem of robotics and includes new results and constructions, which enrich the emerging area of topological robotics.The book is at research entry level addressing the core components in homotopy theory and their important applications in the sciences and thus suitable for advanced undergraduate and graduate students.
The theory of buildings was introduced by J Tits in order to focus on geometric and combinatorial aspects of simple groups of Lie type. Since then the theory has blossomed into an extremely active field of mathematical research having deep connections with topics as diverse as algebraic groups, arithmetic groups, finite simple groups, and finite geometries, as well as with graph theory and other aspects of combinatorics. This volume is an up-to-date survey of the theory of buildings with special emphasis on its interaction with related geometries. As such it will be an invaluable guide to all those whose research touches on these themes. The articles presented here are by experts in their respective fields and are based on talks given at the 1988 Buildings and Related Geometries conference at Pingree Park, Colorado. Topics covered include the classification and construction of buildings, finite groups associated with building-like geometries, graphs and association schemes.
Appliies variational methods and critical point theory on infinite dimenstional manifolds to some problems in Lorentzian geometry which have a variational nature, such as existence and multiplicity results on geodesics and relations between such geodesics and the topology of the manifold.
In this monograph the narrow topology on random probability measures on Polish spaces is investigated in a thorough and comprehensive way. As a special feature, no additional assumptions on the probability space in the background, such as completeness or a countable generated algebra, are made. One of the main results is a direct proof of the random analog of the Prohorov theorem, which is obtained without invoking an embedding of the Polish space into a compact space. Further, the narrow topology is examined and other natural topologies on random measures are compared. In addition, it is shown that the topology of convergence in law-which relates to the "statistical equilibrium"-and the narrow topology are incompatible. A brief section on random sets on Polish spaces provides the fundamentals of this theory. In a final section, the results are applied to random dynamical systems to obtain existence results for invariant measures on compact random sets, as well as uniformity results in the individual ergodic theorem. This clear and incisive volume is useful for graduate students and researchers in mathematical analysis and its applications.
Great first book on algebraic topology. Introduces (co)homology through singular theory.
This volume contains the proceedings of the 2016 Summer School on Fractal Geometry and Complex Dimensions, in celebration of Michel L. Lapidus's 60th birthday, held from June 21-29, 2016, at California Polytechnic State University, San Luis Obispo, California. The theme of the contributions is fractals and dynamics and content is split into four parts, centered around the following themes: Dimension gaps and the mass transfer principle, fractal strings and complex dimensions, Laplacians on fractal domains and SDEs with fractal noise, and aperiodic order (Delone sets and tilings).
Topological Phases of Matter are an exceptionally dynamic field of research: several of the most exciting recent experimental discoveries and conceptual advances in modern physics have originated in this field. These have generated new, topological, notions of order, interactions and excitations. This text provides an accessible, unified and comprehensive introduction to the phenomena surrounding topological matter, with detailed expositions of the underlying theoretical tools and conceptual framework, alongside accounts of the central experimental breakthroughs. Among the systems covered are topological insulators, magnets, semimetals, and superconductors. The emergence of new particles with remarkable properties such as fractional charge and statistics is discussed alongside possible applications such as fault-tolerant topological quantum computing. Suitable as a textbook for graduate or advanced undergraduate students, or as a reference for more experienced researchers, the book assumes little prior background, providing self-contained introductions to topics as varied as phase transitions, superconductivity, and localisation.
This book consists of a selection of articles devoted to new ideas and developments in low dimensional topology. Low dimensions refer to dimensions three and four for the topology of manifolds and their submanifolds. Thus we have papers related to both manifolds and to knotted submanifolds of dimension one in three (classical knot theory) and two in four (surfaces in four dimensional spaces). Some of the work involves virtual knot theory where the knots are abstractions of classical knots but can be represented by knots embedded in surfaces. This leads both to new interactions with classical topology and to new interactions with essential combinatorics.
The numerous publications on spline theory during recent decades show the importance of its development on modern applied mathematics. The purpose of this text is to give an approach to the theory of spline functions, from the introduction of the phrase "spline" by I.J. Schoenbergin 1946 to the newest theories of spline-wavelets or spline-fractals, emphasizing the significance of the relationship between the general theory and its applications. In addition, this volume provides material on spline function theory, as well as an examination of basic methods in spline functions. The authors have complemented the work with a reference section to stimulate further study.
The principal aim of this book is to introduce topology and its many applications viewed within a framework that includes a consideration of compactness, completeness, continuity, filters, function spaces, grills, clusters and bunches, hyperspace topologies, initial and final structures, metric spaces, metrization, nets, proximal continuity, proximity spaces, separation axioms, and uniform spaces. This book provides a complete framework for the study of topology with a variety of applications in science and engineering that include camouflage filters, classification, digital image processing, forgery detection, Hausdorff raster spaces, image analysis, microscopy, paleontology, pattern recognition, population dynamics, stem cell biology, topological psychology, and visual merchandising. It is the first complete presentation on topology with applications considered in the context of proximity spaces, and the nearness and remoteness of sets of objects. A novel feature throughout this book is the use of near and far, discovered by F Riesz over 100 years ago. In addition, it is the first time that this form of topology is presented in the context of a number of new applications.
The self-avoiding walk is a classical model in statistical mechanics, probability theory and mathematical physics. It is also a simple model of polymer entropy which is useful in modelling phase behaviour in polymers. This monograph provides an authoritative examination of interacting self-avoiding walks, presenting aspects of the thermodynamic limit, phase behaviour, scaling and critical exponents for lattice polygons, lattice animals and surfaces. It also includes a comprehensive account of constructive methods in models of adsorbing, collapsing, and pulled walks, animals and networks, and for models of walks in confined geometries. Additional topics include scaling, knotting in lattice polygons, generating function methods for directed models of walks and polygons, and an introduction to the Edwards model. This essential second edition includes recent breakthroughs in the field, as well as maintaining the older but still relevant topics. New chapters include an expanded presentation of directed models, an exploration of methods and results for the hexagonal lattice, and a chapter devoted to the Monte Carlo methods.
This remarkable book has endured as a true masterpiece of mathematical exposition. There are few mathematics books that are still so widely read and continue to have so much to offer-even after more than half a century has passed! The book is overflowing with mathematical ideas, which are always explained clearly and elegantly, and above all, with penetrating insight. It is a joy to read, both for beginners and experienced mathematicians. "Hilbert and Cohn-Vossen" is full of interesting facts, many of which you wish you had known before. It's also likely that you have heard those facts before, but surely wondered where they could be found. The book begins with examples of the simplest curves and surfaces, including thread constructions of certain quadrics and other surfaces. The chapter on regular systems of points leads to the crystallographic groups and the regular polyhedra in R3. In this chapter, they also discuss plane lattices. By considering unit lattices, and throwing in a small amount of number theory when necessary, they effortlessly derive Leibniz's series: ?/4=1?1/3+1/5?1/7+?.... In the section on lattices in three and more dimensions, the authors consider sphere-packing problems, including the famous Kepler problem. One of the most remarkable chapters is "Projective Configurations". In a short introductory section, Hilbert and Cohn-Vossen give perhaps the most concise and lucid description of why a general geometer would care about projective geometry and why such an ostensibly plain setup is truly rich in structure and ideas. Here, we see regular polyhedra again, from a different perspective. One of the high points of the chapter is the discussion of Schlafli's Double-Six, which leads to the description of the 27 lines on the general smooth cubic surface. As is true throughout the book, the magnificent drawings in this chapter immeasurably help the reader. A particularly intriguing section in the chapter on differential geometry is Eleven Properties of the Sphere. Which eleven properties of such a ubiquitous mathematical object caught their discerning eye and why? Many mathematicians are familiar with the plaster models of surfaces found in many mathematics departments. The book includes pictures of some of the models that are found in the Goettingen collection. Furthermore, the mysterious lines that mark these surfaces are finally explained! The chapter on kinematics includes a nice discussion of linkages and the geometry of configurations of points and rods that are connected and, perhaps, constrained in some way. This topic in geometry has become increasingly important in recent times, especially in applications to robotics. This is another example of a simple situation that leads to a rich geometry. It would be hard to overestimate the continuing influence Hilbert-Cohn-Vossen's book has had on mathematicians of this century. It surely belongs in the "pantheon" of great mathematics books.
This textbook is an alternative to a classical introductory book in point-set topology. The approach, however, is radically different from the classical one. It is based on convergence rather than on open and closed sets. Convergence of filters is a natural generalization of the basic and well-known concept of convergence of sequences, so that convergence theory is more natural and intuitive to many, perhaps most, students than classical topology. On the other hand, the framework of convergence is easier, more powerful and far-reaching which highlights a need for a theory of convergence in various branches of analysis.Convergence theory for filters is gradually introduced and systematically developed. Topological spaces are presented as a special subclass of convergence spaces of particular interest, but a large part of the material usually developed in a topology textbook is treated in the larger realm of convergence spaces.
This textbook is an alternative to a classical introductory book in point-set topology. The approach, however, is radically different from the classical one. It is based on convergence rather than on open and closed sets. Convergence of filters is a natural generalization of the basic and well-known concept of convergence of sequences, so that convergence theory is more natural and intuitive to many, perhaps most, students than classical topology. On the other hand, the framework of convergence is easier, more powerful and far-reaching which highlights a need for a theory of convergence in various branches of analysis.Convergence theory for filters is gradually introduced and systematically developed. Topological spaces are presented as a special subclass of convergence spaces of particular interest, but a large part of the material usually developed in a topology textbook is treated in the larger realm of convergence spaces.
This book presents the relationship between classical theta functions and knots. It is based on a novel idea of Razvan Gelca and Alejandro Uribe, which converts Weil's representation of the Heisenberg group on theta functions to a knot theoretical framework, by giving a topological interpretation to a certain induced representation. It also explains how the discrete Fourier transform can be related to 3- and 4-dimensional topology.Theta Functions and Knots can be read in two perspectives. Readers with an interest in theta functions or knot theory can learn how the two are related. Those interested in Chern-Simons theory will find here an introduction using the simplest case, that of abelian Chern-Simons theory. Moreover, the construction of abelian Chern-Simons theory is based entirely on quantum mechanics and not on quantum field theory as it is usually done.Both the theory of theta functions and low dimensional topology are presented in detail, in order to underline how deep the connection between these two fundamental mathematical subjects is. Hence the book is self-contained with a unified presentation. It is suitable for an advanced graduate course, as well as for self-study.
Introduces new and advanced methods of model discovery for time-series data using artificial intelligence. Implements topological approaches to distill "machine-intuitive" models from complex dynamics data. Introduces a new paradigm for a parsimonious model of a dynamical system without resorting to differential equations. Heralds a new era in data-driven science and engineering based on the operational concept of "computational intuition".
Series of scalars, vectors, or functions are among the fundamental objects of mathematical analysis. When the arrangement of the terms is fixed, investigating a series amounts to investigating the sequence of its partial sums. In this case the theory of series is a part of the theory of sequences, which deals with their convergence, asymptotic behavior, etc. The specific character of the theory of series manifests itself when one considers rearrangements (permutations) of the terms of a series, which brings combinatorial considerations into the problems studied. The phenomenon that a numerical series can change its sum when the order of its terms is changed is one of the most impressive facts encountered in a university analysis course. The present book is devoted precisely to this aspect of the theory of series whose terms are elements of Banach (as well as other topological linear) spaces. The exposition focuses on two complementary problems. The first is to char acterize those series in a given space that remain convergent (and have the same sum) for any rearrangement of their terms; such series are usually called uncon ditionally convergent. The second problem is, when a series converges only for certain rearrangements of its terms (in other words, converges conditionally), to describe its sum range, i.e., the set of sums of all its convergent rearrangements."
Many advanced mathematical disciplines, such as dynamical systems, calculus of variations, differential geometry and the theory of Lie groups, have a common foundation in general topology and calculus in normed vector spaces. In this book, mathematically inclined engineering students are offered an opportunity to go into some depth with fundamental notions from mathematical analysis that are not only important from a mathematical point of view but also occur frequently in the more theoretical parts of the engineering sciences. The book should also appeal to university students in mathematics and in the physical sciences.
This book consists of five chapters presenting problems of current research in mathematics, with its history and development, current state, and possible future direction. Four of the chapters are expository in nature while one is based more directly on research. All deal with important areas of mathematics, however, such as algebraic geometry, topology, partial differential equations, Riemannian geometry, and harmonic analysis. This book is addressed to researchers who are interested in those subject areas. Young-Hoon Kiem discusses classical enumerative geometry before string theory and improvements after string theory as well as some recent advances in quantum singularity theory, Donaldson-Thomas theory for Calabi-Yau 4-folds, and Vafa-Witten invariants. Dongho Chae discusses the finite-time singularity problem for three-dimensional incompressible Euler equations. He presents Kato's classical local well-posedness results, Beale-Kato-Majda's blow-up criterion, and recent studies on the singularity problem for the 2D Boussinesq equations. Simon Brendle discusses recent developments that have led to a complete classification of all the singularity models in a three-dimensional Riemannian manifold. He gives an alternative proof of the classification of noncollapsed steady gradient Ricci solitons in dimension 3. Hyeonbae Kang reviews some of the developments in the Neumann-Poincare operator (NPO). His topics include visibility and invisibility via polarization tensors, the decay rate of eigenvalues and surface localization of plasmon, singular geometry and the essential spectrum, analysis of stress, and the structure of the elastic NPO. Danny Calegari provides an explicit description of the shift locus as a complex of spaces over a contractible building. He describes the pieces in terms of dynamically extended laminations and of certain explicit "discriminant-like" affine algebraic varieties. |
![]() ![]() You may like...
Computational Intelligence and…
Maude Josee Blondin, Panos M. Pardalos, …
Hardcover
Logic and African Philosophy - Seminal…
Jonathan O. Chimakonam
Hardcover
R1,667
Discovery Miles 16 670
Elliptic Differential Equations - Theory…
Wolfgang Hackbusch
Hardcover
Nonlinear Analysis - Approximation…
Qamrul Hasan Ansari
Hardcover
|