Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Topology > General
This important reference - based on the proceedings of the Special Session on Geometry and Physics held over a six-month period at the University of Aarhus, Denmark, and on articles from the summer school held at Odense University, Denmark - offers new contributions on a host of topics that involve physics, geometry, and topology. Written by more than 50 leading international experts, Geometry and Physics presents the Seiberg-Witten invariants that facilitate the solution of open problems in Donaldson's theory...describes applications of the Seiberg-Witten invariants...analyzes moduli spaces of semi-stable bundles over Riemann surfaces...addresses operator algebras and topology...demonstrates the planar topological aspects of subfactors...examines symplectic geometry and Einstein metrics...discusses novel ways of computing curvature and holonomy for the determinant line bundle...elucidates the new topic of finite type invariants of three-manifolds and relations with nonperturbative quantum invariants...delineates recent work on a purely topological approach to physics-inspired invariants...and much more. Generously illustrated and containing over 800 key bibliographic citations, Geometry and Physics is an indispensable resource for geometers, topologists, mathematical and theoretical physicists, and graduate-level students in these disciplines.
Fractal Geometry in Biological Systems was written by the leading experts in the field of mathematics and the biological sciences together. It is intended to inform researchers in the bringing about the fundamental nature of fractals and their widespread appearance in biological systems. The chapters explain how the presence of fractal geometry can be used in an analytical way to predict outcomes in systems, to generate hypotheses, and to help design experiments. The authors make the mathematics accessible to a wide audience and do not assume prior experience in this area.
This book is a collection of exercises for courses in higher algebra, linear algebra and geometry. It is helpful for postgraduate students in checking the solutions and answers to the exercises.
The articles in this volume are invited papers from the Marcus Wallenberg symposiumand focus on research topicsthat bridge the gapbetweenanalysis, geometry, and topology. The encounters between these three fieldsare widespread and often provide impetus for major breakthroughs in applications.Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry."
About one and a half decades ago, Feigenbaum, independently of Coullet and Tresser, observed that bifurcations, from simple dynamics to complicated ones, in a family of folding maps like quadratic polynomials follow an universal rule. This observation opened a new way to understanding transition from nonchaotic systems to chaotic or turbulent system in fluid dynamics and many other areas. The renormalization was used to explain this observed universality. This book is intended to bring the reader to the frontier of this active research area which is concerned with renormalization and rigidity in one dimensional dynamics. Most recent results and techniques developed by Sullivan and others (including the authors) in the past five years for an understanding of this universality as well as the most basic and important techniques in the study of one dimensional dynamics also included here.
Based on a conference held in honor of Professor Tarow Indow, this
volume is organized into three major topics concerning the use of
geometry in perception:
This marvelous book of pictures illustrates the fundamental concepts of geometric topology in a way that is very friendly to the reader. The first chapter discusses the meaning of surface and space and gives the classification of orientable surfaces. In the second chapter we are introduced to the Moebius band and surfaces that can be constructed from this non-orientable piece of fabric. In chapter 3, we see how curves can fit in surfaces and how surfaces can fit into spaces with these curves on their boundary. Basic applications to knot theory are discussed and four-dimensional space is introduced.In Chapter 4 we learn about some 3-dimensional spaces and surfaces that sit inside them. These surfaces help us imagine the structures of the larger space.Chapter 5 is completely new! It contains recent results of Cromwell, Izumiya and Marar. One of these results is a formula relating the rank of a surface to the number of triple points. The other major result is a collection of examples of surfaces in 3-space that have one triple point and 6 branch points. These are beautiful generalizations of the Steiner Roman surface.Chapter 6 reviews the movie technique for examining surfaces in 4-dimensional space. Various movies of the Klein bottle are presented, and the Carter-Saito movie move theorem is explained. The author shows us how to turn the 2-sphere inside out by means of these movie moves and this illustration alone is well worth the price of the book!In the last chapter higher dimensional spaces are examined from an elementary point of view.This is a guide book to a wide variety of topics. It will be of value to anyone who wants to understand the subject by way of examples. Undergraduates, beginning graduate students, and non-professionals will profit from reading the book and from just looking at the pictures.
The Handbook and Atlas of Curves describes available analytic and
visual properties of plane and spatial curves. Information is
presented in a unique format, with one half of the book detailing
investigation tools and the other devoted to the Atlas of Plane
Curves. Main definitions, formulas, and facts from curve theory
(plane and spatial) are discussed in depth. They comprise the
necessary apparatus for examining curves.
This volume contains the proceedings of the special session on Modern Methods in Continuum Theory presented at the 100th Annual Joint Mathematics Meetings held in Cincinnati, Ohio. It also features the Houston Problem Book which includes a recently updated set of 200 problems accumulated over several years at the University of Houston.;These proceedings and problems are aimed at pure and applied mathematicians, topologists, geometers, physicists and graduate-level students in these disciplines.
A traditional approach to developing multivariate statistical
theory is algebraic. Sets of observations are represented by
matrices, linear combinations are formed from these matrices by
multiplying them by coefficient matrices, and useful statistics are
found by imposing various criteria of optimization on these
combinations. Matrix algebra is the vehicle for these calculations.
A second approach is computational. Since many users find that they
do not need to know the mathematical basis of the techniques as
long as they have a way to transform data into results, the
computation can be done by a package of computer programs that
somebody else has written. An approach from this perspective
emphasizes how the computer packages are used, and is usually
coupled with rules that allow one to extract the most important
numbers from the output and interpret them. Useful as both
approaches are--particularly when combined--they can overlook an
important aspect of multivariate analysis. To apply it correctly,
one needs a way to conceptualize the multivariate relationships
that exist among variables.
Presents the proceedings of the recently held conference at the University of Plymouth. Papers describe recent work by leading researchers in twistor theory and cover a wide range of subjects, including conformal invariants, integral transforms, Einstein equations, anti-self-dual Riemannian 4-manifolds, deformation theory, 4-dimensional conformal structures, and more.;The book is intended for complex geometers and analysts, theoretical physicists, and graduate students in complex analysis, complex differential geometry, and mathematical physics.
This book recounts the connections between multidimensional hypergeometric functions and representation theory. In 1984, physicists Knizhnik and Zamolodchikov discovered a fundamental differential equation describing correlation functions in the conformal field theory. The equation is defined in terms of Lie algebra. Kohno and Drinfeld found that the monodromy of the differential equation is described in terms of the quantum group associated with Lie algebra. It turns out that this phenomenon is the tip of the iceberg. The Knizhnik-Zamolodchikov differential equation is solved in multidimensional hypergeometric functions, and the hypergeometric functions yield the connection between the representation theories of Lie algebras and quantum groups. The topics presented in this book are not adequately covered in periodicals.
The aim of this work is to apply variational methods and critical point theory on infinite dimensional manifolds, to some problems in Lorentzian Geometry which have a variational nature, such as existence and multiplicity results on geodesics and Relations between such geodesics and the topology of the manifold (in the spirit of Morse Theory). In particular Ljusternik-Schnirelmann critical point theory and Morse theory are exploited. Moreover, the results for general Lorentzian manifolds should be applied to physically relevant space-times of General Relativity, like Schwarzschild and Kerr space-times.
Based on the Working Conference on Boundary Control and Boundary Variation held in Sophia-Antipolis, France, this work provides important examinations of shape optimization and boundary control of hyperbolic systems, including free boundary problems and stabilization. It offers a new approach to large and nonlinear variation of the boundary using global Eulerian co-ordinates and intrinsic geometry.
This volume contains papers presented at the 27th Taniguchi International Symposium, held in Sanda, Japan - focusing on the study of moduli spaces of various geometric objects such as Einstein metrics, conformal structures, and Yang-Mills connections from algebraic and analytic points of view.;Written by over 15 authorities from around the world, Einstein Metrics and Yang-Mills Connections...: discusses current topics in Kaehler geometry, including Kaehler-Einstein metrics, Hermitian-Einstein connections and a new Kaehler version of Kawamata-Viehweg's vanishing theorem; explores algebraic geometric treatments of holomorphic vector bundles on curves and surfaces; addresses nonlinear problems related to Mong-Ampere and Yamabe-type equations as well as nonlinear equations in mathematical physics; and covers interdisciplinary topics such as twistor theory, magnetic monopoles, KP-equations, Einstein and Gibbons-Hawking metrics, and supercommutative algebras of superdifferential operators.;Providing a wide array of original research articles not published elsewhere Einstein Metrics and Yang-Mills Connections is for research mathematicians, including topologists and differential and algebraic geometers, theoretical physicists, and graudate-level students in these disciplines.
This book presents original problems from graduate courses in pure and applied mathematics and even small research topics, significant theorems and information on recent results. It is helpful for specialists working in differential equations.
The new student in differential and low-dimensional topology is faced with a bewildering array of tools and loosely connected theories. This short book presents the essential parts of each, enabling the reader to become 'literate' in the field and begin research as quickly as possible. The only prerequisite assumed is an undergraduate algebraic topology course. The first half of the text reviews basic notions of differential topology and culminates with the classification of exotic seven-spheres. It then dives into dimension three and knot theory. There then follows an introduction to Heegaard Floer homology, a powerful collection of modern invariants of three- and four-manifolds, and of knots, that has not before appeared in an introductory textbook. The book concludes with a glimpse of four-manifold theory. Students will find it an exhilarating and authoritative guide to a broad swathe of the most important topics in modern topology.
This advanced textbook on linear algebra and geometry covers a wide range of classical and modern topics. Differing from existing textbooks in approach, the work illustrates the many-sided applications and connections of linear algebra with functional analysis, quantum mechanics and algebraic and differential geometry. The subjects covered in some detail include normed linear spaces, functions of linear operators, the basic structures of quantum mechanics and an introduction to linear programming. Also discussed are Kahler's metic, the theory of Hilbert polynomials, and projective and affine geometries. Unusual in its extensive use of applications in physics to clarify each topic, this comprehensice volume should be of particular interest to advanced undergraduates and graduates in mathematics and physics, and to lecturers in linear and multilinear algebra, linear programming and quantum mechanics.
The Only Undergraduate Textbook to Teach Both Classical and Virtual Knot Theory An Invitation to Knot Theory: Virtual and Classical gives advanced undergraduate students a gentle introduction to the field of virtual knot theory and mathematical research. It provides the foundation for students to research knot theory and read journal articles on their own. Each chapter includes numerous examples, problems, projects, and suggested readings from research papers. The proofs are written as simply as possible using combinatorial approaches, equivalence classes, and linear algebra. The text begins with an introduction to virtual knots and counted invariants. It then covers the normalized f-polynomial (Jones polynomial) and other skein invariants before discussing algebraic invariants, such as the quandle and biquandle. The book concludes with two applications of virtual knots: textiles and quantum computation.
Offering the insights of L.S. Pontryagin, one of the foremost thinkers in modern mathematics, the second volume in this four-volume set examines the nature and processes that make up topological groups. Already hailed as the leading work in this subject for its abundance of examples and its thorough explanations, the text is arranged so that readers can follow the material either sequentially or schematically. Stand-alone chapters cover such topics as topological division rings, linear representations of compact topological groups, and the concept of a lie group.
This book gives an account of the fundamental results in geometric stability theory, a subject that has grown out of categoricity and classification theory. This approach studies the fine structure of models of stable theories, using the geometry of forking; this often achieves global results relevant to classification theory. Topics range from Zilber-Cherlin classification of infinite locally finite homogenous geometries, to regular types, their geometries, and their role in superstable theories. The structure and existence of definable groups is featured prominently, as is work by Hrushovski. The book is unique in the range and depth of material covered and will be invaluable to anyone interested in modern model theory.
This book presents to the reader a modern axiomatic construction of three-dimensional Euclidean geometry in a rigorous and accessible form. It is helpful for high school teachers who are interested in the modernization of the teaching of geometry.
This detailed yet accessible text provides an essential introduction to the advanced mathematical methods at the core of theoretical physics. The book steadily develops the key concepts required for an understanding of symmetry principles and topological structures, such as group theory, differentiable manifolds, Riemannian geometry, and Lie algebras. Based on a course for senior undergraduate students of physics, it is written in a clear, pedagogical style and would also be valuable to students in other areas of science and engineering. The material has been subject to more than twenty years of feedback from students, ensuring that explanations and examples are lucid and considered, and numerous worked examples and exercises reinforce key concepts and further strengthen readers' understanding. This text unites a wide variety of important topics that are often scattered across different books, and provides a solid platform for more specialized study or research.
The history of the development of Euclidean, non-Euclidean, and relativistic ideas of the shape of the universe, is presented in this lively account by Jeremy Gray. The parallel postulate of Euclidean geometry occupies a unique position in the history of mathematics. In this book, Jeremy Gray reviews the failure of classical attempts to prove the postulate and then proceeds to show how the work of Gauss, Lobachevskii, and Bolyai, laid the foundations of modern differential geometry, by constructing geometries in which the parallel postulate fails. These investigations in turn enabled the formulation of Einstein's theories of special and general relativity, which today form the basis of our conception of the universe. The author has made every attempt to keep the pre-requisites to a bare minimum. This immensely readable account, contains historical and mathematical material which make it suitable for undergraduate students in the history of science and mathematics. For the second edition, the author has taken the opportunity to update much of the material, and to add a chapter on the emerging story of the Arabic contribution to this fascinating aspect of the history of mathematics.
This book studies the large deviations for empirical measures and vector-valued additive functionals of Markov chains with general state space. Under suitable recurrence conditions, the ergodic theorem for additive functionals of a Markov chain asserts the almost sure convergence of the averages of a real or vector-valued function of the chain to the mean of the function with respect to the invariant distribution. In the case of empirical measures, the ergodic theorem states the almost sure convergence in a suitable sense to the invariant distribution. The large deviation theorems provide precise asymptotic estimates at logarithmic level of the probabilities of deviating from the preponderant behavior asserted by the ergodic theorems. |
You may like...
Measures of Noncompactness in Metric…
J. M Ayerbe Toledano, Etc, …
Hardcover
R2,396
Discovery Miles 23 960
Advances in Mathematical Sciences - AWM…
Bahar Acu, Donatella Danielli, …
Hardcover
R1,525
Discovery Miles 15 250
Advances in Metric Fixed Point Theory…
Yeol Je Cho, Mohamed Jleli, …
Hardcover
R3,605
Discovery Miles 36 050
|