Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Topology > General
Little by little we are being provided with an arsenal of operative instruments of a non-numerical nature, in the shape of models and algorithms, capable of providing answers to the "aggressions" which our economics and management systems must withstand, coming from an environment full of turmoil. In the work which we are presenting, we dare to propose a set of elements from which we hope arise focuses capable of renewing those structures of economic thought which are upheld by the geometrical idea. The concepts of pretopology and topology, habitually marginalized in economics and management studies, have centred our interest in recent times. We consider that it is not possible to conceive formal structures capable of representing the Darwinism concept of economic behaviour today without recurring to this fundamental generalisation of metric spaces. In our attempts to find a solid base to the structures proposed for the treatment of economic phenomena, we have frequently resorted to the theory of clans and the theory of affinities with results which we believe to be satisfactory. We would like to go further, establishing, if possible, the connection between their axiomatics at the same time as developing some uncertain pretopologies and topologies capable of linking previously unconnected theories, at the same time easing the creation of other new theories."
. E C, 0 < 1>'1 < 1, and n E Z, n ~ 2. Let~.>. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf.
* Written in a fluid and accessible style, replete with exercises; ideal for undergraduate courses * Suitable for students of land surveying and natural science, as well as professionals, but also for map amateurs
This volume contains edited versions of 11 contributions given by main speakers at the NATO Advanced Study Institute on lReal and Complex Dynamical Systems in Hiller0d, Denmark, June 20th - July 2nd, 1993. The vision of the institute was to illustrate the interplay between two important fields of Mathematics: Real Dynamical Systems and Complex Dynamical Systems. The interaction between these two fields has been growing over the years. Problems in Real Dynamical Systems have recently been solved using complex tools in the real or by extension to the complex. In return, problems in Complex Dynamical Systems have been settled using results from Real Dynamical Systems. The programme of the institute was to examine the state of the art of central parts of both Real and Complex Dynamical Systems, to reinforce contact between the two aspects of the theory and to make recent progress in each accessible to a larger group of mathematicians.
This book presents, in a clear and structured way, the set function \mathcal{T} and how it evolved since its inception by Professor F. Burton Jones in the 1940s. It starts with a very solid introductory chapter, with all the prerequisite material for navigating through the rest of the book. It then gradually advances towards the main properties, Decomposition theorems, \mathcal{T}-closed sets, continuity and images, to modern applications. The set function \mathcal{T} has been used by many mathematicians as a tool to prove results about the semigroup structure of the continua, and about the existence of a metric continuum that cannot be mapped onto its cone or to characterize spheres. Nowadays, it has been used by topologists worldwide to investigate open problems in continuum theory. This book can be of interest to both advanced undergraduate and graduate students, and to experienced researchers as well. Its well-defined structure make this book suitable not only for self-study but also as support material to seminars on the subject. Its many open problems can potentially encourage mathematicians to contribute with further advancements in the field.
This volume summarizes recent developments in the topological and algebraic structures in fuzzy sets and may be rightly viewed as a continuation of the stan dardization of the mathematics of fuzzy sets established in the "Handbook," namely the Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, Volume 3 of The Handbooks of Fuzzy Sets Series (Kluwer Academic Publish ers, 1999). Many of the topological chapters of the present work are not only based upon the foundations and notation for topology laid down in the Hand book, but also upon Handbook developments in convergence, uniform spaces, compactness, separation axioms, and canonical examples; and thus this work is, with respect to topology, a continuation of the standardization of the Hand book. At the same time, this work significantly complements the Handbook in regard to algebraic structures. Thus the present volume is an extension of the content and role of the Handbook as a reference work. On the other hand, this volume, even as the Handbook, is a culmination of mathematical developments motivated by the renowned International Sem inar on Fuzzy Set Theory, also known as the Linz Seminar, held annually in Linz, Austria. Much of the material of this volume is related to the Twenti eth Seminar held in February 1999, material for which the Seminar played a crucial and stimulating role, especially in providing feedback, connections, and the necessary screening of ideas."
The workshop was set up in order to stimulate the interaction between (finite and algebraic) geometries and groups. Five areas of concentrated research were chosen on which attention would be focused, namely: diagram geometries and chamber systems with transitive automorphism groups, geometries viewed as incidence systems, properties of finite groups of Lie type, geometries related to finite simple groups, and algebraic groups. The list of talks (cf. page iii) illustrates how these subjects were represented during the workshop. The contributions to these proceedings mainly belong to the first three areas; therefore, (i) diagram geometries and chamber systems with transitive automorphism groups, (ii) geometries viewed as incidence systems, and (iii) properties of finite groups of Lie type occur as section titles. The fourth and final section of these proceedings has been named graphs and groups; besides some graph theory, this encapsules most of the work related to finite simple groups that does not (explicitly) deal with diagram geometry. A few more words about the content: (i). Diagram geometries and chamber systems with transitive automorphism groups. As a consequence of Tits' seminal work on the subject, all finite buildings are known. But usually, in a situation where groups are to be characterized by certain data concerning subgroups, a lot less is known than the full parabolic picture corresponding to the building.
This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, sets out to familiarize the reader to the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The exposition starts from the basic of the subject, introducing ergodicity, mixing and entropy. The ergodic theory of smooth dynamical systems is treated. Numerous examples are presented carefully along with the ideas underlying the most important results. Moreover, the book deals with the dynamical systems of statistical mechanics, and with various kinetic equations. For this second enlarged and revised edition, published as Mathematical Physics I, EMS 100, two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations were added. This book is compulsory reading for all mathematicians working in this field, or wanting to learn about it.
This book draws on elements from everyday life, architecture, and the arts to provide the reader with elementary notions of geometric topology. Pac Man, subway maps, and architectural blueprints are the starting point for exploring how knowledge about geometry and, more specifically, topology has been consolidated over time, offering a learning journey that is both dense and enjoyable. The text begins with a discussion of mathematical models, moving on to Platonic and Keplerian theories that explain the Cosmos. Geometry from Felix Klein's point of view is then presented, paving the way to an introduction to topology. The final chapters present the concepts of closed, orientable, and non-orientable surfaces, as well as hypersurface models. Adopting a style that is both rigorous and accessible, this book will appeal to a broad audience, from curious students and researchers in various areas of knowledge to everyone who feels instigated by the power of mathematics in representing our world - and beyond.
This book, which is the first of two volumes, presents, in a unique way, some of the most relevant research tools of modern analysis. This work empowers young researchers with all the necessary techniques to explore the various subfields of this broad subject, and introduces relevant frameworks where these tools can be immediately deployed. Volume I starts with the foundations of modern analysis. The first three chapters are devoted to topology, measure theory, and functional analysis. Chapter 4 offers a comprehensive analysis of the main function spaces, while Chapter 5 covers more concrete subjects, like multivariate analysis, which are closely related to applications and more difficult to find in compact form. Chapter 6 deals with smooth and non-smooth calculus of functions; Chapter 7 introduces certain important classes of nonlinear operators; and Chapter 8 complements the previous three chapters with topics of variational analysis. Each chapter of this volume finishes with a list of problems - handy for understanding and self-study - and historical notes that give the reader a more vivid picture of how the theory developed. Volume II consists of various applications using the tools and techniques developed in this volume. By offering a clear and wide picture of the tools and applications of modern analysis, this work can be of great benefit not only to mature graduate students seeking topics for research, but also to experienced researchers with an interest in this vast and rich field of mathematics.
After almost half a century of existence the main question about quantum field theory seems still to be: what does it really describe? and not yet: does it provide a good description of nature? J. A. Swieca Ever since quantum field theory has been applied to strong int- actions, physicists have tried to obtain a nonperturbative und- standing. Dispersion theoretic sum rules, the S-matrix bootstrap, the dual models (and their reformulation in string language) and s the conformal bootstrap of the 70 are prominent cornerstones on this thorny path. Furthermore instantons and topological solitons have shed some light on the nonperturbati ve vacuum structure respectively on the existence of nonperturbative "charge" s- tors. To these attempts an additional one was recently added', which is yet not easily describable in terms of one "catch phrase". Dif- rent from previous attempts, it is almost entirely based on new noncommutative algebraic structures: "exchange algebras" whose "structure constants" are braid matrices which generate a ho- morphism of the infini te (inducti ve limi t) Artin braid group Boo into a von Neumann algebra. Mathematically there is a close 2 relation to recent work of Jones * Its physical origin is the resul t of a subtle analysis of Ei nstein causality expressed in terms of local commutati vi ty of space-li ke separated fields. It is most clearly recognizable in conformal invariant quantum field theories.
This book is a result of a workshop, the 8th of the successful TopoInVis workshop series, held in 2019 in Nykoeping, Sweden. The workshop regularly gathers some of the world's leading experts in this field. Thereby, it provides a forum for discussions on the latest advances in the field with a focus on finding practical solutions to open problems in topological data analysis for visualization. The contributions provide introductory and novel research articles including new concepts for the analysis of multivariate and time-dependent data, robust computational approaches for the extraction and approximations of topological structures with theoretical guarantees, and applications of topological scalar and vector field analysis for visualization. The applications span a wide range of scientific areas comprising climate science, material sciences, fluid dynamics, and astronomy. In addition, community efforts with respect to joint software development are reported and discussed.
This classic book is a systematic exposition of general topology. It is especially intended as background for modern analysis. Based on lectures given at the University of Chicago, the University of California and Tulane University, this book is intended to be a reference and a text. As a reference work, it offers a reasonably complete coverage of the area, and this has resulted in a more extended treatment than would normally be given in a course. As a text, however, the exposition in the eariler chapters proceeds at a more pedestrian pace. A preliminary chapter covers those topics requisite to the main body of work.
Graduate students and researchers in applied mathematics, optimization, engineering, computer science, and management science will find this book a useful reference which provides an introduction to applications and fundamental theories in nonlinear combinatorial optimization. Nonlinear combinatorial optimization is a new research area within combinatorial optimization and includes numerous applications to technological developments, such as wireless communication, cloud computing, data science, and social networks. Theoretical developments including discrete Newton methods, primal-dual methods with convex relaxation, submodular optimization, discrete DC program, along with several applications are discussed and explored in this book through articles by leading experts.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. 1hen one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin' . * 1111 Oulik'. n. . Chi" *. * ~ Mm~ Mu,d. ", Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
This book is addressed to graduate students and researchers in the fields of mathematics and physics who are interested in mathematical and theoretical physics, differential geometry, mechanics, quantization theories and quantum physics, quantum groups etc., and who are familiar with differentiable and symplectic manifolds. The aim of the book is to provide the reader with a monograph that enables him to study systematically basic and advanced material on the recently developed theory of Poisson manifolds, and that also offers ready access to bibliographical references for the continuation of his study. Until now, most of this material was dispersed in research papers published in many journals and languages. The main subjects treated are the Schouten-Nijenhuis bracket; the generalized Frobenius theorem; the basics of Poisson manifolds; Poisson calculus and cohomology; quantization; Poisson morphisms and reduction; realizations of Poisson manifolds by symplectic manifolds and by symplectic groupoids and Poisson-Lie groups. The book unifies terminology and notation. It also reports on some original developments stemming from the author's work, including new results on Poisson cohomology and geometric quantization, cofoliations and biinvariant Poisson structures on Lie groups.
A revised and substantially enlarged edition of the Russian book Discrete transformation groups and manifold structures published by Nauka in 1983, this volume presents a comprehensive treatment of the geometric theory of discrete groups and the associated tessellations of the underlying space. Also
This interdisciplinary book covers a wide range of subjects, from pure mathematics (knots, braids, homotopy theory, number theory) to more applied mathematics (cryptography, algebraic specification of algorithms, dynamical systems) and concrete applications (modeling of polymers and ionic liquids, video, music and medical imaging). The main mathematical focus throughout the book is on algebraic modeling with particular emphasis on braid groups. The research methods include algebraic modeling using topological structures, such as knots, 3-manifolds, classical homotopy groups, and braid groups. The applications address the simulation of polymer chains and ionic liquids, as well as the modeling of natural phenomena via topological surgery. The treatment of computational structures, including finite fields and cryptography, focuses on the development of novel techniques. These techniques can be applied to the design of algebraic specifications for systems modeling and verification. This book is the outcome of a workshop in connection with the research project Thales on Algebraic Modeling of Topological and Computational Structures and Applications, held at the National Technical University of Athens, Greece in July 2015. The reader will benefit from the innovative approaches to tackling difficult questions in topology, applications and interrelated research areas, which largely employ algebraic tools.
This volume is a collection of surveys of research problems in
topology and its applications. The topics covered include general
topology, set-theoretic topology, continuum theory, topological
algebra, dynamical systems, computational topology and functional
analysis.
'Et moi, ..., si favait su comment eo reveoir. je One service mathematics has rendered the n'y serais point all6.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded nonsense'. Tbe series is divergent; therefore we may be EricT. Bell ajle to do something with it O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlineari tL es abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sci ences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser vice topology has rendered mathematical physics .. .'; 'One service logic has rendered computer science . .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d' etre of this series."
This book is an outcome of two Conferences on Ulam Type Stability (CUTS) organized in 2016 (July 4-9, Cluj-Napoca, Romania) and in 2018 (October 8-13, 2018, Timisoara, Romania). It presents up-to-date insightful perspective and very resent research results on Ulam type stability of various classes of linear and nonlinear operators; in particular on the stability of many functional equations in a single and several variables (also in the lattice environments, Orlicz spaces, quasi-b-Banach spaces, and 2-Banach spaces) and some orthogonality relations (e.g., of Birkhoff-James). A variety of approaches are presented, but a particular emphasis is given to that of fixed points, with some new fixed point results and their applications provided. Besides these several other topics are considered that are somehow related to the Ulam stability such as: invariant means, geometry of Banach function modules, queueing systems, semi-inner products and parapreseminorms, subdominant eigenvalue location of a bordered diagonal matrix and optimal forward contract design for inventory. New directions and several open problems regarding stability and non-stability concepts are included. Ideal for use as a reference or in a seminar, this book is aimed toward graduate students, scientists and engineers working in functional equations, difference equations, operator theory, functional analysis, approximation theory, optimization theory, and fixed point theory who wish to be introduced to a wide spectrum of relevant theories, methods and applications leading to interdisciplinary research. It advances the possibilities for future research through an extensive bibliography and a large spectrum of techniques, methods and applications.
This volume covers many diverse topics related in varying degrees to mathematics in mind including the mathematical and topological structures of thought and communication. It examines mathematics in mind from the perspective of the spiral, cyclic and hyperlinked structures of the human mind in terms of its language, its thoughts and its various modes of communication in science, philosophy, literature and the arts including a chapter devoted to the spiral structure of the thought of Marshall McLuhan. In it, the authors examine the topological structures of hypertext, hyperlinking, and hypermedia made possible by the Internet and the hyperlinked structures that existed before its emergence. It also explores the cognitive origins of mathematical thinking of the human mind and its relation to the emergence of spoken language, and studies the emergence of mathematical notation and its impact on education. Topics addressed include: * The historical context of any topic that involves how mathematical thinking emerged, focusing on archaeological and philological evidence. * Connection between math cognition and symbolism, annotation and other semiotic processes. * Interrelationships between mathematical discovery and cultural processes, including technological systems that guide the thrust of cognitive and social evolution. * Whether mathematics is an innate faculty or forged in cultural-historical context * What, if any, structures are shared between mathematics and language
This book is the result of a meeting on Topology and Functional Analysis, and is dedicated to Professor Manuel Lopez-Pellicer's mathematical research. Covering topics in descriptive topology and functional analysis, including topological groups and Banach space theory, fuzzy topology, differentiability and renorming, tensor products of Banach spaces and aspects of Cp-theory, this volume is particularly useful to young researchers wanting to learn about the latest developments in these areas.
The book contains 8 detailed expositions of the lectures given at the Kaikoura 2000 Workshop on Computability, Complexity, and Computational Algebra. Topics covered include basic models and questions of complexity theory, the Blum-Shub-Smale model of computation, probability theory applied to algorithmics (randomized alogrithms), parametric complexity, Kolmogorov complexity of finite strings, computational group theory, counting problems, and canonical models of ZFC providing a solution to continuum hypothesis. The text addresses students in computer science or mathematics, and professionals in these areas who seek a complete, but gentle introduction to a wide range of techniques, concepts, and research horizons in the area of computational complexity in a broad sense. |
You may like...
Topological Groups and the…
Lydia Aussenhofer, Dikran Dikranjan, …
Hardcover
R3,146
Discovery Miles 31 460
Nonlinear Partial Differential Equations…
Garth Baker, Alexandre S. Freire
Hardcover
R2,399
Discovery Miles 23 990
Topology and Geometric Group Theory…
Michael W. Davis, James Fowler, …
Hardcover
Handbook of Geometry and Topology of…
Jose Luis Cisneros-Molina, Dung Trang Le, …
Hardcover
|