![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology > General
This up-to-date survey of the whole field of topology is the flagship of the topology subseries of the Encyclopaedia. The book gives an overview of various subfields, beginning with the elements and proceeding right up to the present frontiers of research.
The aim of this book is to give necessary and sufficient conditions for a C oo map to be C 0-stable; the aim is achieved in a wide range of dimensions via a detailed study of the geometry and topology of many classes of "generic" singularities. The methods developed for examining the topology and geometry use results from many areas of mathematics - geometric topology, stratification theory, algebraic topology, algebraic geometry, commutative algebra...- and further progress will doubtless be made from the application of deeper results from these areas. Conversely, it is to be hoped that the description of the behaviour of generic singularities will also have interesting consequences for these areas of mathematics, which are those with most interaction with singularity theory. The book describes original research; essentially none of its results has previously appeared elsewhere, either in scientific articles or in books. This book is intended for research mathematicians in singularity theory and in selected areas of geometric topology, stratification theory, algebraic geometry, commutative algebra.
This interdisciplinary volume collects contributions from experts in their respective fields with as common theme diagrams. Diagrams play a fundamental role in the mathematical visualization and philosophical analysis of forms in space. Some of the most interesting and profound recent developments in contemporary sciences, whether in topology, geometry, dynamic systems theory, quantum field theory or string theory, have been made possible by the introduction of new types of diagrams, which, in addition to their essential role in the discovery of new classes of spaces and phenomena, have contributed to enriching and clarifying the meaning of the operations, structures and properties that are at the heart of these spaces and phenomena. The volume gives a closer look at the scope and the nature of diagrams as constituents of mathematical and physical thought, their function in contemporary artistic work, and appraise, in particular, the actual importance of the diagrams of knots, of braids, of fields, of interaction, of strings in topology and geometry, in quantum physics and in cosmology, but also in theory of perception, in plastic arts and in philosophy. The editors carefully curated this volume to be an inspiration to students and researchers in philosophy, phenomenology, mathematics and the sciences, as well as artists, musicians and the general interested audience.
The authors develop a theory of $THH$ and $TC$ of Waldhausen categories and prove the analogues of Waldhausen's theorems for $K$-theory. They resolve the longstanding confusion about localization sequences in $THH$ and $TC$, and establish a specialized devissage theorem. As applications, the authors prove conjectures of Hesselholt and Ausoni-Rognes about localization cofiber sequences surrounding $THH(ku)$, and more generally establish a framework for advancing the Rognes program for studying Waldhausen's chromatic filtration on $A(*)$.
The featured review of the AMS describes the author s earlier work in the field of approach spaces as, A landmark in the history of general topology . In this book, the author has expanded this study further and taken it in a new and exciting direction. The number of conceptually and technically different systems which characterize approach spaces is increased and moreover their uniform counterpart, uniform gauge spaces, is put into the picture. An extensive study of completions, both for approach spaces and for uniform gauge spaces, as well as compactifications for approach spaces is performed. A paradigm shift is created by the new concept of index analysis. Making use of the rich intrinsic quantitative information present in approach structures, a technique is developed whereby indices are defined that measure the extent to which properties hold, and theorems become inequalities involving indices; therefore vastly extending the realm of applicability of many classical results. The theory is then illustrated in such varied fields as topology, functional analysis, probability theory, hyperspace theory and domain theory. Finally a comprehensive analysis is made concerning the categorical aspects of the theory and its links with other topological categories. "Index Analysis" will be useful for mathematicians working in category theory, topology, probability and statistics, functional analysis, and theoretical computer science."
Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.
This book introduces polyhedra as a tool for graph theory and discusses their properties and applications in solving the Gauss crossing problem. The discussion is extended to embeddings on manifolds, particularly to surfaces of genus zero and non-zero via the joint tree model, along with solution algorithms. Given its rigorous approach, this book would be of interest to researchers in graph theory and discrete mathematics.
The book is a revised and updated version of the lectures given by the author at the University of Timi oara during the academic year 1990-1991. Its goal is to present in detail someold and new aspects ofthe geometry ofsymplectic and Poisson manifolds and to point out some of their applications in Hamiltonian mechanics and geometric quantization. The material is organized as follows. In Chapter 1 we collect some general facts about symplectic vector spaces, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study ofHamiltonian mechanics. We present here the gen- eral theory ofHamiltonian mechanicalsystems, the theory ofthe corresponding Pois- son bracket and also some examples ofinfinite-dimensional Hamiltonian mechanical systems. Chapter 3 starts with some standard facts concerning the theory of Lie groups and Lie algebras and then continues with the theory ofmomentum mappings and the Marsden-Weinstein reduction. The theory of Hamilton-Poisson mechan- ical systems makes the object of Chapter 4. Chapter 5 js dedicated to the study of the stability of the equilibrium solutions of the Hamiltonian and the Hamilton- Poisson mechanical systems. We present here some of the remarcable results due to Holm, Marsden, Ra~iu and Weinstein. Next, Chapter 6 and 7 are devoted to the theory of geometric quantization where we try to solve, in a geometrical way, the so called Dirac problem from quantum mechanics. We follow here the construc- tion given by Kostant and Souriau around 1964.
Fixed Point Results in W-Distance Spaces is a self-contained and comprehensive reference for advanced fixed-point theory and can serve as a useful guide for related research. The book can be used as a teaching resource for advanced courses on fixed-point theory, which is a modern and important field in mathematics. It would be especially valuable for graduate and postgraduate courses and seminars. Features Written in a concise and fluent style, covers a broad range of topics and includes related topics from research. Suitable for researchers and postgraduates. Contains brand new results not published elsewhere.
A study of topology and geometry, beginning with a comprehensible account of the extraordinary and rather mysterious impact of mathematical physics, and especially gauge theory, on the study of the geometry and topology of manifolds. The focus of the book is the Yang-Mills-Higgs field and some considerable effort is expended to make clear its origin and significance in physics. Much of the mathematics developed here to study these fields is standard, but the treatment always keeps one eye on the physics and sacrifices generality in favor of clarity. The author brings readers up the level of physics and mathematics needed to conclude with a brief discussion of the Seiberg-Witten invariants. A large number of exercises are included to encourage active participation on the part of the reader.
This book contains the proceedings of the AMS Special Session on Topology of Biopolymers, held from April 21-22, 2018, at Northeastern University, Boston, MA. The papers cover recent results on the topology and geometry of DNA and protein knotting using techniques from knot theory, spatial graph theory, differential geometry, molecular simulations, and laboratory experimentation. They include current work on the following topics: the density and supercoiling of DNA minicircles; the dependence of DNA geometry on its amino acid sequence; random models of DNA knotting; topological models of DNA replication and recombination; theories of how and why proteins knot; topological and geometric approaches to identifying entanglements in proteins; and topological and geometric techniques to predict protein folding rates. All of the articles are written as surveys intended for a broad interdisciplinary audience with a minimum of prerequisites. In addition to being a useful reference for experts, this book also provides an excellent introduction to the fast-moving field of topology and geometry of biopolymers.
Features Provides an accessible introduction to mathematics in art Supports the narrative with a self-contained mathematical theory, with complete proofs of the main results (including the classification theorem for similarities) Presents hundreds of figures, illustrations, computer-generated graphics, designs, photographs, and art reproductions, mainly presented in full color Includes 21 projects and about 280 exercises, about half of which are fully solved Covers Euclidean geometry, golden section, Fibonacci numbers, symmetries, tilings, similarities, fractals, cellular automata, inversion, hyperbolic geometry, perspective drawing, Platonic and Archimedean solids, and topology New to the Second Edition New exercises, projects and artworks Revised, reorganised and expanded chapters More use of color throughout
This book provides a comprehensive study of convex integration theory in immersion-theoretic topology. Convex integration theory, developed originally by M. Gromov, provides general topological methods for solving the h-principle for a wide variety of problems in differential geometry and topology, with applications also to PDE theory and to optimal control theory. Though topological in nature, the theory is based on a precise analytical approximation result for higher order derivatives of functions, proved by M. Gromov. This book is the first to present an exacting record and exposition of all of the basic concepts and technical results of convex integration theory in higher order jet spaces, including the theory of iterated convex hull extensions and the theory of relative h-principles. A second feature of the book is its detailed presentation of applications of the general theory to topics in symplectic topology, divergence free vector fields on 3-manifolds, isometric immersions, totally real embeddings, underdetermined non-linear systems of PDEs, the relaxation theorem in optimal control theory, as well as applications to the traditional immersion-theoretical topics such as immersions, submersions, k-mersions and free maps. The book should prove useful to graduate students and to researchers in topology, PDE theory and optimal control theory who wish to understand the h-principle and how it can be applied to solve problems in their respective disciplines.
The Center and Focus Problem: Algebraic Solutions and Hypotheses, M. N. Popa and V.V. Pricop, ISBN: 978-1-032-01725-9 (Hardback) This book focuses on an old problem of the qualitative theory of differential equations, called the Center and Focus Problem. It is intended for mathematicians, researchers, professors and Ph.D. students working in the field of differential equations, as well as other specialists who are interested in the theory of Lie algebras, commutative graded algebras, the theory of generating functions and Hilbert series. The book reflects the results obtained by the authors in the last decades. A rather essential result is obtained in solving Poincare's problem. Namely, there are given the upper estimations of the number of Poincare-Lyapunov quantities, which are algebraically independent and participate in solving the Center and Focus Problem that have not been known so far. These estimations are equal to Krull dimensions of Sibirsky graded algebras of comitants and invariants of systems of differential equations.
The collection of papers in this volume represents recent advances in the under standing of the geometry and topology of singularities. The book covers a broad range of topics which are in the focus of contemporary singularity theory. Its idea emerged during two Singularities workshops held at the University of Lille (USTL) in 1999 and 2000. Due to the breadth of singularity theory, a single volume can hardly give the complete picture of today's progress. Nevertheless, this collection of papers provides a good snapshot of what is the state of affairs in the field, at the turn of the century. Several papers deal with global aspects of singularity theory. Classification of fam ilies of plane curves with prescribed singularities were among the first problems in algebraic geometry. Classification of plane cubics was known to Newton and classification of quartics was achieved by Klein at the end of the 19th century. The problem of classification of curves of higher degrees was addressed in numerous works after that. In the paper by Artal, Carmona and Cogolludo, the authors de scribe irreducible sextic curves having a singular point of type An (n > 15) and a large (Le. , :::: 18) sum of Milnor numbers of other singularities. They have discov ered many interesting properties of these families. In particular they have found new examples of so-called Zariski pairs, i. e.
There is no recent elementary introduction to the theory of discrete dynamical systems that stresses the topological background of the topic. This book fills this gap: it deals with this theory as 'applied general topology'. We treat all important concepts needed to understand recent literature. The book is addressed primarily to graduate students. The prerequisites for understanding this book are modest: a certain mathematical maturity and course in General Topology are sufficient.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
This monograph explores the concept of the Brouwer degree and its continuing impact on the development of important areas of nonlinear analysis. The authors define the degree using an analytical approach proposed by Heinz in 1959 and further developed by Mawhin in 2004, linking it to the Kronecker index and employing the language of differential forms. The chapters are organized so that they can be approached in various ways depending on the interests of the reader. Unifying this structure is the central role the Brouwer degree plays in nonlinear analysis, which is illustrated with existence, surjectivity, and fixed point theorems for nonlinear mappings. Special attention is paid to the computation of the degree, as well as to the wide array of applications, such as linking, differential and partial differential equations, difference equations, variational and hemivariational inequalities, game theory, and mechanics. Each chapter features bibliographic and historical notes, and the final chapter examines the full history. Brouwer Degree will serve as an authoritative reference on the topic and will be of interest to professional mathematicians, researchers, and graduate students.
The Center and Focus Problem: Algebraic Solutions and Hypotheses, M. N. Popa and V.V. Pricop, ISBN: 978-1-032-01725-9 (Hardback) This book focuses on an old problem of the qualitative theory of differential equations, called the Center and Focus Problem. It is intended for mathematicians, researchers, professors and Ph.D. students working in the field of differential equations, as well as other specialists who are interested in the theory of Lie algebras, commutative graded algebras, the theory of generating functions and Hilbert series. The book reflects the results obtained by the authors in the last decades. A rather essential result is obtained in solving Poincare's problem. Namely, there are given the upper estimations of the number of Poincare-Lyapunov quantities, which are algebraically independent and participate in solving the Center and Focus Problem that have not been known so far. These estimations are equal to Krull dimensions of Sibirsky graded algebras of comitants and invariants of systems of differential equations.
Periodic differential equations appear in many contexts such as in the theory of nonlinear oscillators, in celestial mechanics, or in population dynamics with seasonal effects. The most traditional approach to study these equations is based on the introduction of small parameters, but the search of nonlocal results leads to the application of several topological tools. Examples are fixed point theorems, degree theory, or bifurcation theory. These well-known methods are valid for equations of arbitrary dimension and they are mainly employed to prove the existence of periodic solutions. Following the approach initiated by Massera, this book presents some more delicate techniques whose validity is restricted to two dimensions. These typically produce additional dynamical information such as the instability of periodic solutions, the convergence of all solutions to periodic solutions, or connections between the number of harmonic and subharmonic solutions. The qualitative study of periodic planar equations leads naturally to a class of discrete dynamical systems generated by homeomorphisms or embeddings of the plane. To study these maps, Brouwer introduced the notion of a translation arc, somehow mimicking the notion of an orbit in continuous dynamical systems. The study of the properties of these translation arcs is full of intuition and often leads to "non-rigorous proofs". In the book, complete proofs following ideas developed by Brown are presented and the final conclusion is the Arc Translation Lemma, a counterpart of the Poincare-Bendixson theorem for discrete dynamical systems. Applications to differential equations and discussions on the topology of the plane are the two themes that alternate throughout the five chapters of the book.
Far from being separate entities, many social and engineering systems can be considered as complex network systems (CNSs) associated with closely linked interactions with neighbouring entities such as the Internet and power grids. Roughly speaking, a CNS refers to a networking system consisting of lots of interactional individuals, exhibiting fascinating collective behaviour that cannot always be anticipated from the inherent properties of the individuals themselves. As one of the most fundamental examples of cooperative behaviour, consensus within CNSs (or the synchronization of complex networks) has gained considerable attention from various fields of research, including systems science, control theory and electrical engineering. This book mainly studies consensus of CNSs with dynamics topologies - unlike most existing books that have focused on consensus control and analysis for CNSs under a fixed topology. As most practical networks have limited communication ability, switching graphs can be used to characterize real-world communication topologies, leading to a wider range of practical applications. This book provides some novel multiple Lyapunov functions (MLFs), good candidates for analysing the consensus of CNSs with directed switching topologies, while each chapter provides detailed theoretical analyses according to the stability theory of switched systems. Moreover, numerical simulations are provided to validate the theoretical results. Both professional researchers and laypeople will benefit from this book.
This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham's theorem on simplicial complexes. In addition, Sullivan's results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma *Presentation of a natural proof of a Serre spectral sequence result *Updated content throughout the book, reflecting advances in the area of homotopy theory With its modern approach and timely revisions, this second edition of Rational Homotopy Theory and Differential Forms will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.
This is the second volume of the Handbook of the Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory and related topics.Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
This book provides an accessible yet rigorous introduction to topology and homology focused on the simplicial space. It presents a compact pipeline from the foundations of topology to biomedical applications. It will be of interest to medical physicists, computer scientists, and engineers, as well as undergraduate and graduate students interested in this topic. Features: Presents a practical guide to algebraic topology as well as persistence homology Contains application examples in the field of biomedicine, including the analysis of histological images and point cloud data
This unique book's subject is meanders (connected, oriented, non-self-intersecting planar curves intersecting the horizontal line transversely) in the context of dynamical systems. By interpreting the transverse intersection points as vertices and the arches arising from these curves as directed edges, meanders are introduced from the graphtheoretical perspective. Supplementing the rigorous results, mathematical methods, constructions, and examples of meanders with a large number of insightful figures, issues such as connectivity and the number of connected components of meanders are studied in detail with the aid of collapse and multiple collapse, forks, and chambers. Moreover, the author introduces a large class of Morse meanders by utilizing the right and left one-shift maps, and presents connections to Sturm global attractors, seaweed and Frobenius Lie algebras, and the classical Yang-Baxter equation. Contents Seaweed Meanders Meanders Morse Meanders and Sturm Global Attractors Right and Left One-Shifts Connection Graphs of Type I, II, III and IV Meanders and the Temperley-Lieb Algebra Representations of Seaweed Lie Algebras CYBE and Seaweed Meanders |
You may like...
Undergraduate Topology - A Working…
Aisling McCluskey, Brian McMaster
Hardcover
R2,143
Discovery Miles 21 430
Topological Methods in Data Analysis and…
Peer-Timo Bremer, Ingrid Hotz, …
Hardcover
R4,039
Discovery Miles 40 390
Measures of Noncompactness in Metric…
J. M Ayerbe Toledano, Etc, …
Hardcover
R2,395
Discovery Miles 23 950
|