Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Topology > General
Celebrating a century of geometry and geometry teaching, this volume includes popular articles on Pythagoras, the golden ratio and recreational geometry. Thirty "Desert Island Theorems" from distinguished mathematicians and educators disclose surprising results. (Contributors include a Nobel Laureate and a Pulitzer Prize winner.) Co-published with The Mathematical Association of America.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Over the past six decades, several extremely important fields in mathematics have been developed. Among these are Ito calculus, Gaussian measures on Banach spaces, Malliavan calculus, and white noise distribution theory. These subjects have many applications, ranging from finance and economics to physics and biology. Unfortunately, the background information required to conduct research in these subjects presents a tremendous roadblock. The background material primarily stems from an abstract subject known as infinite dimensional topological vector spaces. While this information forms the backdrop for these subjects, the books and papers written about topological vector spaces were never truly written for researchers studying infinite dimensional analysis. Thus, the literature for topological vector spaces is dense and difficult to digest, much of it being written prior to the 1960s. Tools for Infinite Dimensional Analysis aims to address these problems by providing an introduction to the background material for infinite dimensional analysis that is friendly in style and accessible to graduate students and researchers studying the above-mentioned subjects. It will save current and future researchers countless hours and promote research in these areas by removing an obstacle in the path to beginning study in areas of infinite dimensional analysis. Features Focused approach to the subject matter Suitable for graduate students as well as researchers Detailed proofs of primary results
This work presents a general theory as well as constructive methodology in order to solve "observation problems," namely, those problems that pertain to reconstructing the full information about a dynamical process on the basis of partial observed data. A general methodology to control processes on the basis of the observations is also developed. Illustrative but practical applications in the chemical and petroleum industries are shown.
Combinatorics plays a prominent role in contemporary mathematics, due to the vibrant development it has experienced in the last two decades and its many interactions with other subjects. This book arises from the INdAM conference "CoMeTA 2013 - Combinatorial Methods in Topology and Algebra,'' which was held in Cortona in September 2013. The event brought together emerging and leading researchers at the crossroads of Combinatorics, Topology and Algebra, with a particular focus on new trends in subjects such as: hyperplane arrangements; discrete geometry and combinatorial topology; polytope theory and triangulations of manifolds; combinatorial algebraic geometry and commutative algebra; algebraic combinatorics; and combinatorial representation theory. The book is divided into two parts. The first expands on the topics discussed at the conference by providing additional background and explanations, while the second presents original contributions on new trends in the topics addressed by the conference.
Focuses on the latest research in Graph Theory Provides recent research findings that are occurring in this field Discusses the advanced developments and gives insights on an international and transnational level Identifies the gaps in the results Presents forthcoming international studies and researches, long with applications in Networking, Computer Science, Chemistry, Biological Sciences, etc.
In this superb topology text, the readers not only learn about knot theory, 3-dimensional manifolds, and the topology of embedded graphs, but also their role in understanding molecular structures. Most results described in the text are motivated by the questions of chemists or molecular biologists, though they often go beyond answering the original question asked. No specific mathematical or chemical prerequisites are required. The text is enhanced by nearly 200 illustrations and 100 exercises. With this fascinating book, undergraduate mathematics students escape the world of pure abstract theory and enter that of real molecules, while chemists and biologists find simple and clear but rigorous definitions of mathematical concepts they handle intuitively in their work.
This monograph presents in a unified manner the use of the Morse index, and especially its connections to the maximum principle, in the study of nonlinear elliptic equations. The knowledge or a bound on the Morse index of a solution is a very important qualitative information which can be used in several ways for different problems, in order to derive uniqueness, existence or nonexistence, symmetry, and other properties of solutions.
This proceedings volume presents a diverse collection of high-quality, state-of-the-art research and survey articles written by top experts in low-dimensional topology and its applications. The focal topics include the wide range of historical and contemporary invariants of knots and links and related topics such as three- and four-dimensional manifolds, braids, virtual knot theory, quantum invariants, braids, skein modules and knot algebras, link homology, quandles and their homology; hyperbolic knots and geometric structures of three-dimensional manifolds; the mechanism of topological surgery in physical processes, knots in Nature in the sense of physical knots with applications to polymers, DNA enzyme mechanisms, and protein structure and function. The contents is based on contributions presented at the International Conference on Knots, Low-Dimensional Topology and Applications - Knots in Hellas 2016, which was held at the International Olympic Academy in Greece in July 2016. The goal of the international conference was to promote the exchange of methods and ideas across disciplines and generations, from graduate students to senior researchers, and to explore fundamental research problems in the broad fields of knot theory and low-dimensional topology. This book will benefit all researchers who wish to take their research in new directions, to learn about new tools and methods, and to discover relevant and recent literature for future study.
In the last few years the use of geometrie methods has permeated many more branehes of mathematies and the seiences. Briefly its role may be eharaeterized as folIows. Whereas methods of mathematieal analysis deseribe phenomena 'in the sm all " geometrie methods eontribute to giving the picture 'in the large'. A seeond no less important property of geometrie methods is the eonvenienee of using its language to deseribe and give qualitative explanations for diverse mathematieal phenomena and patterns. From this point of view, the theory of veetor bundles together with mathematieal analysis on manifolds (global anal- ysis and differential geometry) has provided a major stimulus. Its language turned out to be extremely fruitful: connections on prineipal veetor bundles (in terms of whieh various field theories are deseribed), transformation groups including the various symmetry groups that arise in eonneetion with physieal problems, in asymptotie methods of partial differential equations with small parameter, in elliptie operator theory, in mathematieal methods of classieal meehanies and in mathematieal methods in eeonomies. There are other eur- rently less signifieant applieations in other fields. Over a similar period, uni- versity edueation has ehanged eonsiderably with the appearanee of new courses on differential geometry and topology. New textbooks have been published but 'geometry and topology' has not, in our opinion, been wen eovered from a prae- tieal applieations point of view.
Appliies variational methods and critical point theory on infinite dimenstional manifolds to some problems in Lorentzian geometry which have a variational nature, such as existence and multiplicity results on geodesics and relations between such geodesics and the topology of the manifold.
This book aims to provide undergraduates with an understanding of geometric topology. Topics covered include a sampling from point-set, geometric, and algebraic topology. The presentation is pragmatic, avoiding the famous pedagogical method "whereby one begins with the general and proceeds to the particular only after the student is too confused to understand it." Exercises are an integral part of the text. Students taking the course should have some knowledge of linear algebra. An appendix provides a brief survey of the necessary background of group theory.
Traditionally, knot theory deals with diagrams of knots and the search of invariants of diagrams which are invariant under the well known Reidemeister moves. This book goes one step beyond: it gives a method to construct invariants for one parameter famillies of diagrams and which are invariant under 'higher' Reidemeister moves. Luckily, knots in 3-space, often called classical knots, can be transformed into knots in the solid torus without loss of information. It turns out that knots in the solid torus have a particular rich topological moduli space. It contains many 'canonical' loops to which the invariants for one parameter families can be applied, in order to get a new sort of invariants for classical knots.
In this monograph the narrow topology on random probability measures on Polish spaces is investigated in a thorough and comprehensive way. As a special feature, no additional assumptions on the probability space in the background, such as completeness or a countable generated algebra, are made. One of the main results is a direct proof of the random analog of the Prohorov theorem, which is obtained without invoking an embedding of the Polish space into a compact space. Further, the narrow topology is examined and other natural topologies on random measures are compared. In addition, it is shown that the topology of convergence in law-which relates to the "statistical equilibrium"-and the narrow topology are incompatible. A brief section on random sets on Polish spaces provides the fundamentals of this theory. In a final section, the results are applied to random dynamical systems to obtain existence results for invariant measures on compact random sets, as well as uniformity results in the individual ergodic theorem. This clear and incisive volume is useful for graduate students and researchers in mathematical analysis and its applications.
The theory of buildings was introduced by J Tits in order to focus on geometric and combinatorial aspects of simple groups of Lie type. Since then the theory has blossomed into an extremely active field of mathematical research having deep connections with topics as diverse as algebraic groups, arithmetic groups, finite simple groups, and finite geometries, as well as with graph theory and other aspects of combinatorics. This volume is an up-to-date survey of the theory of buildings with special emphasis on its interaction with related geometries. As such it will be an invaluable guide to all those whose research touches on these themes. The articles presented here are by experts in their respective fields and are based on talks given at the 1988 Buildings and Related Geometries conference at Pingree Park, Colorado. Topics covered include the classification and construction of buildings, finite groups associated with building-like geometries, graphs and association schemes.
Great first book on algebraic topology. Introduces (co)homology through singular theory.
"Knot theory is a fascinating mathematical subject, with multiple links to theoretical physics. This enyclopedia is filled with valuable information on a rich and fascinating subject." - Ed Witten, Recipient of the Fields Medal "I spent a pleasant afternoon perusing the Encyclopedia of Knot Theory. It's a comprehensive compilation of clear introductions to both classical and very modern developments in the field. It will be a terrific resource for the accomplished researcher, and will also be an excellent way to lure students, both graduate and undergraduate, into the field." - Abigail Thompson, Distinguished Professor of Mathematics at University of California, Davis Knot theory has proven to be a fascinating area of mathematical research, dating back about 150 years. Encyclopedia of Knot Theory provides short, interconnected articles on a variety of active areas in knot theory, and includes beautiful pictures, deep mathematical connections, and critical applications. Many of the articles in this book are accessible to undergraduates who are working on research or taking an advanced undergraduate course in knot theory. More advanced articles will be useful to graduate students working on a related thesis topic, to researchers in another area of topology who are interested in current results in knot theory, and to scientists who study the topology and geometry of biopolymers. Features Provides material that is useful and accessible to undergraduates, postgraduates, and full-time researchers Topics discussed provide an excellent catalyst for students to explore meaningful research and gain confidence and commitment to pursuing advanced degrees Edited and contributed by top researchers in the field of knot theory
Introduces new and advanced methods of model discovery for time-series data using artificial intelligence. Implements topological approaches to distill "machine-intuitive" models from complex dynamics data. Introduces a new paradigm for a parsimonious model of a dynamical system without resorting to differential equations. Heralds a new era in data-driven science and engineering based on the operational concept of "computational intuition".
The numerous publications on spline theory during recent decades show the importance of its development on modern applied mathematics. The purpose of this text is to give an approach to the theory of spline functions, from the introduction of the phrase "spline" by I.J. Schoenbergin 1946 to the newest theories of spline-wavelets or spline-fractals, emphasizing the significance of the relationship between the general theory and its applications. In addition, this volume provides material on spline function theory, as well as an examination of basic methods in spline functions. The authors have complemented the work with a reference section to stimulate further study.
This book consists of five chapters presenting problems of current research in mathematics, with its history and development, current state, and possible future direction. Four of the chapters are expository in nature while one is based more directly on research. All deal with important areas of mathematics, however, such as algebraic geometry, topology, partial differential equations, Riemannian geometry, and harmonic analysis. This book is addressed to researchers who are interested in those subject areas. Young-Hoon Kiem discusses classical enumerative geometry before string theory and improvements after string theory as well as some recent advances in quantum singularity theory, Donaldson-Thomas theory for Calabi-Yau 4-folds, and Vafa-Witten invariants. Dongho Chae discusses the finite-time singularity problem for three-dimensional incompressible Euler equations. He presents Kato's classical local well-posedness results, Beale-Kato-Majda's blow-up criterion, and recent studies on the singularity problem for the 2D Boussinesq equations. Simon Brendle discusses recent developments that have led to a complete classification of all the singularity models in a three-dimensional Riemannian manifold. He gives an alternative proof of the classification of noncollapsed steady gradient Ricci solitons in dimension 3. Hyeonbae Kang reviews some of the developments in the Neumann-Poincare operator (NPO). His topics include visibility and invisibility via polarization tensors, the decay rate of eigenvalues and surface localization of plasmon, singular geometry and the essential spectrum, analysis of stress, and the structure of the elastic NPO. Danny Calegari provides an explicit description of the shift locus as a complex of spaces over a contractible building. He describes the pieces in terms of dynamically extended laminations and of certain explicit "discriminant-like" affine algebraic varieties.
In this richly illustrated book, the contributors describe the Mereon Matrix, its dynamic geometry and topology. Through the definition of eleven First Principles, it offers a new perspective on dynamic, whole and sustainable systems that may serve as a template information model. This template has been applied to a set of knowledge domains for verification purposes: pre-life-evolution, human molecular genetics and biological evolution, as well as one social application on classroom management.The importance of the book comes in the following ways:
This first of the three-volume book is targeted as a basic course in topology for undergraduate and graduate students of mathematics. It studies metric spaces and general topology. It starts with the concept of the metric which is an abstraction of distance in the Euclidean space. The special structure of a metric space induces a topology that leads to many applications of topology in modern analysis and modern algebra, as shown in this volume. This volume also studies topological properties such as compactness and connectedness. Considering the importance of compactness in mathematics, this study covers the Stone-Cech compactification and Alexandroff one-point compactification. This volume also includes the Urysohn lemma, Urysohn metrization theorem, Tietz extension theorem, and Gelfand-Kolmogoroff theorem. The content of this volume is spread into eight chapters of which the last chapter conveys the history of metric spaces and the history of the emergence of the concepts leading to the development of topology as a subject with their motivations with an emphasis on general topology. It includes more material than is comfortably covered by beginner students in a one-semester course. Students of advanced courses will also find the book useful. This book will promote the scope, power, and active learning of the subject, all the while covering a wide range of theories and applications in a balanced unified way.
The language of -categories provides an insightful new way of expressing many results in higher-dimensional mathematics but can be challenging for the uninitiated. To explain what exactly an -category is requires various technical models, raising the question of how they might be compared. To overcome this, a model-independent approach is desired, so that theorems proven with any model would apply to them all. This text develops the theory of -categories from first principles in a model-independent fashion using the axiomatic framework of an -cosmos, the universe in which -categories live as objects. An -cosmos is a fertile setting for the formal category theory of -categories, and in this way the foundational proofs in -category theory closely resemble the classical foundations of ordinary category theory. Equipped with exercises and appendices with background material, this first introduction is meant for students and researchers who have a strong foundation in classical 1-category theory.
The self-avoiding walk is a classical model in statistical mechanics, probability theory and mathematical physics. It is also a simple model of polymer entropy which is useful in modelling phase behaviour in polymers. This monograph provides an authoritative examination of interacting self-avoiding walks, presenting aspects of the thermodynamic limit, phase behaviour, scaling and critical exponents for lattice polygons, lattice animals and surfaces. It also includes a comprehensive account of constructive methods in models of adsorbing, collapsing, and pulled walks, animals and networks, and for models of walks in confined geometries. Additional topics include scaling, knotting in lattice polygons, generating function methods for directed models of walks and polygons, and an introduction to the Edwards model. This essential second edition includes recent breakthroughs in the field, as well as maintaining the older but still relevant topics. New chapters include an expanded presentation of directed models, an exploration of methods and results for the hexagonal lattice, and a chapter devoted to the Monte Carlo methods.
The continued and dramatic rise in the size of data sets has meant that new methods are required to model and analyze them. This timely account introduces topological data analysis (TDA), a method for modeling data by geometric objects, namely graphs and their higher-dimensional versions: simplicial complexes. The authors outline the necessary background material on topology and data philosophy for newcomers, while more complex concepts are highlighted for advanced learners. The book covers all the main TDA techniques, including persistent homology, cohomology, and Mapper. The final section focuses on the diverse applications of TDA, examining a number of case studies drawn from monitoring the progression of infectious diseases to the study of motion capture data. Mathematicians moving into data science, as well as data scientists or computer scientists seeking to understand this new area, will appreciate this self-contained resource which explains the underlying technology and how it can be used. |
You may like...
Advances in Metric Fixed Point Theory…
Yeol Je Cho, Mohamed Jleli, …
Hardcover
R3,605
Discovery Miles 36 050
Advances in Mathematical Sciences - AWM…
Bahar Acu, Donatella Danielli, …
Hardcover
R1,525
Discovery Miles 15 250
The Four-Color Theorem - History…
Rudolf Fritsch, Gerda Fritsch
Hardcover
R2,408
Discovery Miles 24 080
International Symposium on Ring Theory
Gary F. Birkenmeier, Jae K. Park, …
Hardcover
R2,427
Discovery Miles 24 270
|