![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Topology > General
The book provides a comprehensive theory of ODE which come as Euler-Lagrange equations from generally higher-order Lagrangians. Emphasis is laid on applying methods from differential geometry (fibered manifolds and their jet-prolongations) and global analysis (distributions and exterior differential systems). Lagrangian and Hamiltonian dynamics, Hamilton-Jacobi theory, etc., for any Lagrangian system of any order are presented. The key idea - to build up these theories as related with the class of equivalent Lagrangians - distinguishes this book from other texts on higher-order mechanics. The reader should be familiar with elements of differential geometry, global analysis and the calculus of variations.
Convex and discrete geometry is one of the most intuitive subjects in mathematics. One can explain many of its problems, even the most difficult - such as the sphere-packing problem (what is the densest possible arrangement of spheres in an n-dimensional space?) and the Borsuk problem (is it possible to partition any bounded set in an n-dimensional space into n+1 subsets, each of which is strictly smaller in "extent" than the full set?) - in terms that a layman can understand; and one can reasonably make conjectures about their solutions with little training in mathematics.
In this book, two seemingly unrelated fields -- algebraic topology and robust control -- are brought together. The book develops algebraic/differential topology from an application-oriented point of view. The book takes the reader on a path starting from a well-motivated robust stability problem, showing the relevance of the simplicial approximation theorem and how it can be efficiently implemented using computational geometry. The simplicial approximation theorem serves as a primer to more serious topological issues such as the obstruction to extending the Nyquist map, K-theory of robust stabilization, and eventually the differential topology of the Nyquist map, culminating in the explanation of the lack of continuity of the stability margin relative to rounding errors. The book is suitable for graduate students in engineering and/or applied mathematics, academic researchers and governmental laboratories.
This introduction to modern geometry differs from other books in the field due to its emphasis on applications and its discussion of special relativity as a major example of a non-Euclidean geometry. Additionally, it covers the two important areas of non-Euclidean geometry, spherical geometry and projective geometry, as well as emphasising transformations, and conics and planetary orbits. Much emphasis is placed on applications throughout the book, which motivate the topics, and many additional applications are given in the exercises. It makes an excellent introduction for those who need to know how geometry is used in addition to its formal theory.
This book constitutes the refereed proceedings of the 6th
International Workshop on Discrete Geometry for Computer Imagery,
DGCI'96, held in Lyon, France, in November 1996.
This anthology is based on the First ACM Workshop on Applied
Computational Geometry, WACG '96, held in Philadelphia, PA, USA, in
May 1996, as part of the FCRC Conference.
This book has been called a Workbook to make it clear from the start that it is not a conventional textbook. Conventional textbooks proceed by giving in each section or chapter first the definitions of the terms to be used, the concepts they are to work with, then some theorems involving these terms (complete with proofs) and finally some examples and exercises to test the readers' understanding of the definitions and the theorems. Readers of this book will indeed find all the conventional constituents--definitions, theorems, proofs, examples and exercises but not in the conventional arrangement. In the first part of the book will be found a quick review of the basic definitions of general topology interspersed with a large num ber of exercises, some of which are also described as theorems. (The use of the word Theorem is not intended as an indication of difficulty but of importance and usefulness. ) The exercises are deliberately not "graded"-after all the problems we meet in mathematical "real life" do not come in order of difficulty; some of them are very simple illustrative examples; others are in the nature of tutorial problems for a conven tional course, while others are quite difficult results. No solutions of the exercises, no proofs of the theorems are included in the first part of the book-this is a Workbook and readers are invited to try their hand at solving the problems and proving the theorems for themselves."
We have tried to design this book for both instructional and reference use, during and after a first course in algebraic topology aimed at users rather than developers; indeed, the book arose from such courses taught by the authors. We start gently, with numerous pictures to illustrate the fundamental ideas and constructions in homotopy theory that are needed in later chapters. A certain amount of redundancy is built in for the reader's convenience: we hope to minimize: fiipping back and forth, and we have provided some appendices for reference. The first three are concerned with background material in algebra, general topology, manifolds, geometry and bundles. Another gives tables of homo topy groups that should prove useful in computations, and the last outlines the use of a computer algebra package for exterior calculus. Our approach has been that whenever a construction from a proof is needed, we have explicitly noted and referenced this. In general, wehavenot given a proof unless it yields something useful for computations. As always, the only way to un derstand mathematics is to do it and use it. To encourage this, Ex denotes either an example or an exercise. The choice is usually up to you the reader, depending on the amount of work you wish to do; however, some are explicitly stated as ( unanswered) questions. In such cases, our implicit claim is that you will greatly benefit from at least thinking about how to answer them."
The book discusses various construction principles for translation
planes and spreads from a general and unifying point of view and
relates them to the theory of kinematic spaces. The book is
intended for people working in the field of incidence geometry and
can be read by everyone who knows the basic facts about projective
and affine planes.
Singular spaces with upper curvature bounds and, in particular, spaces of nonpositive curvature, have been of interest in many fields, including geometric (and combinatorial) group theory, topology, dynamical systems and probability theory. In the first two chapters of the book, a concise introduction into these spaces is given, culminating in the Hadamard-Cartan theorem and the discussion of the ideal boundary at infinity for simply connected complete spaces of nonpositive curvature. In the third chapter, qualitative properties of the geodesic flow on geodesically complete spaces of nonpositive curvature are discussed, as are random walks on groups of isometries of nonpositively curved spaces. The main class of spaces considered should be precisely complementary to symmetric spaces of higher rank and Euclidean buildings of dimension at least two (Rank Rigidity conjecture). In the smooth case, this is known and is the content of the Rank Rigidity theorem. An updated version of the proof of the latter theorem (in the smooth case) is presented in Chapter IV of the book. This chapter contains also a short introduction into the geometry of the unit tangent bundle of a Riemannian manifold and the basic facts about the geodesic flow. In an appendix by Misha Brin, a self-contained and short proof of the ergodicity of the geodesic flow of a compact Riemannian manifold of negative curvature is given. The proof is elementary and should be accessible to the non-specialist. Some of the essential features and problems of the ergodic theory of smooth dynamical systems are discussed, and the appendix can serve as an introduction into this theory.
The book collects results about realization spaces of polytopes. It gives a presentation of the author's "Universality Theorem for 4-polytopes." It is a comprehensive survey of the important results that have been obtained in that direction. The approaches chosen are direct and very geometric in nature. The book is addressed to researchers and to graduate students. The former will find a comprehensive source for the above mentioned results. The latter will find a readable introduction to the field. The reader is assumed to be familiar with basic concepts of linear algebra.
The purpose of this book is to provide an integrated development of modern analysis and topology through the integrating vehicle of uniform spaces. The reader should have taken an advanced calculus course and an introductory topology course. It is intended that a subset of the book could be used for an upper-level undergraduate course whereas much of the full text would be suitable for a one-year graduate class. An attempt has been made to document the history of all the central ideas and references and historical notes are embedded in the text. These can lead the interested reader to the foundational sources where these ideas emerged.
This book is a study of combinatorial structures of 3-mani- folds, especially Haken 3-manifolds. Specifically, it is concerned with Heegard graphs in Haken 3-manifolds, i.e., with graphs whose complements have a free fundamental group. These graphs always exist. They fix not only a combinatorial stucture but also a presentation for the fundamental group of the underlying 3-manifold. The starting point of the book is the result that the intersection of Heegard graphs with incompressible surfaces, or hierarchies of such surfaces, is very rigid. A number of finiteness results lead up to a ri- gidity theorem for Heegard graphs. The book is intended for graduate students and researchers in low-dimensional topolo- gy as well as combinatorial theory. It is self-contained and requires only a basic knowledge of the theory of 3-manifolds
This book is devoted to the development of adequate spatial
representations for robot motion planning. Drawing upon advanced
heuristic techniques from AI and computational geometry, the
authors introduce a general model for spatial representation of
physical objects. This model is then applied to two key problems in
intelligent robotics: collision detection and motion planning. In
addition, the application to actual robot arms is kept always in
mind, instead of dealing with simplified models.
This book constitutes the refereed proceedings of the international
Symposium on Graph Drawing, GD '95, held in Passau, Germany, in
September 1995.
This volume is an introduction and a monograph about tight polyhedra. The treatment of the 2-dimensional case is self- contained and fairly elementary. It would be suitable also for undergraduate seminars. Particular emphasis is given to the interplay of various special disciplines, such as geometry, elementary topology, combinatorics and convex polytopes in a way not found in other books. A typical result relates tight submanifolds to combinatorial properties of their convex hulls. The chapters on higher dimensions generalize the 2-dimensional case using concepts from combinatorics and topology, such as combinatorial Morse theory. A number of open problems is discussed.
This monograph is devoted to computational morphology, particularly
to the construction of a two-dimensional or a three-dimensional
closed object boundary through a set of points in arbitrary
position.
"This book is a major treatise in mathematics and is essential in the working library of the modern analyst." (Bulletin of the London Mathematical Society)
This book introduces the graduate mathematician and researcher to the effective use of nonstandard analysis (NSA). It provides a tutorial introduction to this modern theory of infinitesimals, followed by nine examples of applications, including complex analysis, stochastic differential equations, differential geometry, topology, probability, integration, and asymptotics. It ends with remarks on teaching with infinitesimals.
Experts from university and industry are presenting new technologies for solving industrial problems and giving many important and practicable impulses for new research. Topics explored include NURBS, product engineering, object oriented modelling, solid modelling, surface interrogation, feature modelling, variational design, scattered data algorithms, geometry processing, blending methods, smoothing and fairing algorithms, spline conversion. This collection of 24 articles gives a state-of-the-art survey of the relevant problems and issues in geometric modelling.
Difference spaces arise by taking sums of finite or fractional differences. Linear forms which vanish identically on such a space are invariant in a corresponding sense. The difference spaces of L2 (Rn) are Hilbert spaces whose functions are characterized by the behaviour of their Fourier transforms near, e.g., the origin. One aim is to establish connections between these spaces and differential operators, singular integral operators and wavelets. Another aim is to discuss aspects of these ideas which emphasise invariant linear forms on locally compact groups. The work primarily presents new results, but does so from a clear, accessible and unified viewpoint, which emphasises connections with related work.
From the reviews: "The reading is very easy and pleasant for the non-mathematician, which is really noteworthy. The two chapters enunciate the basic principles of the field, ... indicate connections with other fields of mathematics and sketch the motivation behind the various concepts which are introduced.... What is particularly pleasant is the fact that the authors are quite successful in giving to the reader the feeling behind the demonstrations which are sketched. Another point to notice is the existence of an annotated extended bibliography and a very complete index. This really enhances the value of this book and puts it at the level of a particularly interesting reference tool. I thus strongly recommend to buy this very interesting and stimulating book." "Journal de Physique"
The numerous publications on spline theory during recent decades show the importance of its development on modern applied mathematics. The purpose of this text is to give an approach to the theory of spline functions, from the introduction of the phrase "spline" by I.J. Schoenbergin 1946 to the newest theories of spline-wavelets or spline-fractals, emphasizing the significance of the relationship between the general theory and its applications. In addition, this volume provides material on spline function theory, as well as an examination of basic methods in spline functions. The authors have complemented the work with a reference section to stimulate further study.
This book is an introduction to main methods and principal results in the theory of Co(remark: o is upper index!!)-small perturbations of dynamical systems. It is the first comprehensive treatment of this topic. In particular, Co(upper index!)-generic properties of dynamical systems, topological stability, perturbations of attractors, limit sets of domains are discussed. The book contains some new results (Lipschitz shadowing of pseudotrajectories in structurally stable diffeomorphisms for instance). The aim of the author was to simplify and to "visualize" some basic proofs, so the main part of the book is accessible to graduate students in pure and applied mathematics. The book will also be a basic reference for researchers in various fields of dynamical systems and their applications, especially for those who study attractors or pseudotrajectories generated by numerical methods.
The volume contains the texts of four courses, given by the authors at a summer school that sought to present the state of the art in the growing field of topological methods in the theory of o.d.e. (in finite and infinitedimension), and to provide a forum for discussion of the wide variety of mathematical tools which are involved. The topics covered range from the extensions of the Lefschetz fixed point and the fixed point index on ANR's, to the theory of parity of one-parameter families of Fredholm operators, and from the theory of coincidence degree for mappings on Banach spaces to homotopy methods for continuation principles. CONTENTS: P. Fitzpatrick: The parity as an invariant for detecting bifurcation of the zeroes of one parameter families of nonlinear Fredholm maps.- M. Martelli: Continuation principles and boundary value problems.- J. Mawhin: Topological degree and boundary value problems for nonlinear differential equations.- R.D. Nussbaum: The fixed point index and fixed point theorems. |
You may like...
A Treatise on the Horse and His Diseases…
B J (Burney James) B 1845 Kendall, Dr B. J. Kendall Co
Hardcover
R761
Discovery Miles 7 610
Kirstenbosch - A Visitor's Guide
Colin Paterson-Jones, John Winter
Paperback
Rapid Interpretation of Heart and Lung…
Bruce W. Keene, Francis W.K. Smith, …
Hardcover
R1,817
Discovery Miles 18 170
Rabi N. Bhattacharya - Selected Papers
Manfred Denker, Edward C. Waymire
Hardcover
R4,892
Discovery Miles 48 920
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
Essential Methods for Design Based…
Danny Pfeffermann, C.R. Rao
Paperback
R1,389
Discovery Miles 13 890
The Essentials of Marketing Research
Lawrence Silver, Robert E. Stevens, …
Paperback
R2,472
Discovery Miles 24 720
The Accidental Mayor - Herman Mashaba…
Michael Beaumont
Paperback
(5)
|