![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization > General
Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is 'no free lunch' and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, including the ones formerly mentioned, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem.This book presents several research efforts to resolve this scientific challenge with important computational implications. It provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. It also features a unified modeling framework to handle a wide range of applications involving both commutative and noncommutative variables, and to solve concretely large-scale instances. Readers will find a practical section dedicated to the use of available open-source software libraries.This interdisciplinary monograph is essential reading for students, researchers and professionals interested in solving optimization problems with polynomial input data.
This book covers an introduction to convex optimization, one of the powerful and tractable optimization problems that can be efficiently solved on a computer. The goal of the book is tohelp develop a sense of what convex optimization is, and how it can be used in a widening array of practical contexts with a particular emphasis on machine learning.The first part of the book covers core concepts of convex sets, convex functions, and related basic definitions that serve understanding convex optimization and its corresponding models. The second part deals with one very useful theory, called duality, which enables us to: (1) gain algorithmic insights; and (2) obtain an approximate solution to non-convex optimization problems which are often difficult to solve. The last part focuses on modern applications in machine learning and deep learning.A defining feature of this book is that it succinctly relates the "story" of how convex optimization plays a role, via historical examples and trending machine learning applications. Another key feature is that it includes programming implementation of a variety of machine learning algorithms inspired by optimization fundamentals, together with a brief tutorial of the used programming tools. The implementation is based on Python, CVXPY, and TensorFlow. This book does not follow a traditional textbook-style organization, but is streamlined via a series of lecture notes that are intimately related, centered around coherent themes and concepts. It serves as a textbook mainly for a senior-level undergraduate course, yet is also suitable for a first-year graduate course. Readers benefit from having a good background in linear algebra, some exposure to probability, and basic familiarity with Python.
This book addresses the mathematical and the practical aspects of motion implied by advanced control theory. The richness and power of the theory are demonstrated by separate analyses of single-model and multi-modal repertoires, consisting of verities of estimation and control facets. Starting with purely mathematical concepts, specifically, abstract probability and information theories, model control theory is gradually revealed as a rather amazing domain. The mathematical equations, taking essentially simple forms, are exposed as powerful generators of motion. Moreover, seemingly obvious applications of the theory, such as high-performance aircraft control make room for unexpected virtual reality feedback in control of motion for the neurologically impaired.Following the presentation of some historical milestones and mathematical preliminaries, the book is divided into four parts. The first deals with minimal-order models of state estimation and control. The second addresses multi-modal estimation and control, which facilitates the operation of high-performance aircraft in large flight envelopes. The third presents the transition from naturally nonlinear control of movement in obstacle avoidance and object targeting to virtually linear control of movement in the neurologically impaired. The fourth and final part of the book addresses the application of virtual sensory feedback in walking with specific neurological impairment. While the clinical studies reported were all based on a single-model paradigm, a later reflection reveals that, given the variety of neurological symptoms associated with the relevant disorders, a multi-modal approach, as that addressed in the control of high-performance aircraft in a large flight envelope, would be similarly applicable in the treatment of neurological disorders.
It has widely been recognized that submodular functions play essential roles in efficiently solvable combinatorial optimization problems. Since the publication of the 1st edition of this book fifteen years ago, submodular functions have been showing further increasing importance in optimization, combinatorics, discrete mathematics, algorithmic computer science, and algorithmic economics, and there have been made remarkable developments of theory and algorithms in submodular functions. The 2nd edition of the book supplements the 1st edition with a lot of remarks and with new two chapters: "Submodular Function Minimization" and "Discrete Convex Analysis." The present 2nd edition is still a unique book on submodular functions, which is essential to students and researchers interested in combinatorial optimization, discrete mathematics, and discrete algorithms in the fields of mathematics, operations research, computer science, and economics.
The book addresses optimization in the petroleum industry from a practical, large-scale-application-oriented point of view. The models and techniques presented help to optimize the limited resources in the industry in order to maximize economic benefits, ensure operational safety, and reduce environmental impact. The book discusses several important real-life applications of optimization in the petroleum industry, ranging from the scheduling of personnel time to the blending of gasoline. It covers a wide spectrum of relevant activities, including drilling, producing, maintenance, and distribution. The text begins with an introductory overview of the petroleum industry and then of optimization models and techniques. The main body of the book details a variety of applications of optimization models and techniques within the petroleum industry. Applied Optimization in the Petroleum Industry helps readers to find effective optimization-based solutions to their own practical problems in a large and important industrial sector, still the main source of the world’s energy and the source of raw materials for a wide variety of industrial and consumer products.
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference.
The book systematically introduces smart power system design and its infrastructure, platform and operating standards. It focuses on multi-objective optimization and illustrates where the intelligence of the system lies. With abundant project data, this book is a practical guideline for engineers and researchers in electrical engineering, as well as power network designers and managers in administration.
Optimization techniques have developed into a modern-day solution for real-world problems in various industries. As a way to improve performance and handle issues of uncertainty, optimization research becomes a topic of special interest across disciplines. Problem Solving and Uncertainty Modeling through Optimization and Soft Computing Applications presents the latest research trends and developments in the area of applied optimization methodologies and soft computing techniques for solving complex problems. Taking a multi-disciplinary approach, this critical publication is an essential reference source for engineers, managers, researchers, and post-graduate students.
This book describes concepts and tools needed for water resources management, including methods for modeling, simulation, optimization, big data analysis, data mining, remote sensing, geographical information system, game theory, conflict resolution, System dynamics, agent-based models, multiobjective, multicriteria, and multiattribute decision making and risk and uncertainty analysis, for better and sustainable management of water resources and consumption, thus mitigating the present and future global water shortage crisis. It presents the applications of these tools through case studies which demonstrate its benefits of proper management of water resources systems. This book acts as a reference for students, professors, industrial practitioners, and stakeholders in the field of water resources and hydrology.
This book focuses primarily on the nature-inspired approach for designing smart applications. It includes several implementation paradigms such as design and path planning of wireless network, security mechanism and implementation for dynamic as well as static nodes, learning method of cloud computing, data exploration and management, data analysis and optimization, decision taking in conflicting environment, etc. The book fundamentally highlights the recent research advancements in the field of engineering and science.
This book establishes an important mathematical connection between cooperative control problems and network optimization problems. It shows that many cooperative control problems can in fact be understood, under certain passivity assumptions, using a pair of static network optimization problems. Merging notions from passivity theory and network optimization, it describes a novel network optimization approach that can be applied to the synthesis of controllers for diffusively-coupled networks of passive (or passivity-short) dynamical systems. It also introduces a data-based, model-free approach for the synthesis of network controllers for multi-agent systems with passivity-short agents. Further, the book describes a method for monitoring link faults in multi-agent systems using passivity theory and graph connectivity. It reports on some practical case studies describing the effectivity of the developed approaches in vehicle networks. All in all, this book offers an extensive source of information and novel methods in the emerging field of multi-agent cooperative control, paving the way to future developments of autonomous systems for various application domains
This invaluable book provides approximately eighty examples illustrating the theory of controlled discrete-time Markov processes. Except for applications of the theory to real-life problems like stock exchange, queues, gambling, optimal search etc, the main attention is paid to counter-intuitive, unexpected properties of optimization problems. Such examples illustrate the importance of conditions imposed in the theorems on Markov Decision Processes. Many of the examples are based upon examples published earlier in journal articles or textbooks while several other examples are new. The aim was to collect them together in one reference book which should be considered as a complement to existing monographs on Markov decision processes.The book is self-contained and unified in presentation.The main theoretical statements and constructions are provided, and particular examples can be read independently of others. Examples in Markov Decision Processes is an essential source of reference for mathematicians and all those who apply the optimal control theory to practical purposes. When studying or using mathematical methods, the researcher must understand what can happen if some of the conditions imposed in rigorous theorems are not satisfied. Many examples confirming the importance of such conditions were published in different journal articles which are often difficult to find. This book brings together examples based upon such sources, along with several new ones. In addition, it indicates the areas where Markov decision processes can be used. Active researchers can refer to this book on applicability of mathematical methods and theorems. It is also suitable reading for graduate and research students where they will better understand the theory.
This contributed volume presents some of the latest research related to model order reduction of complex dynamical systems with a focus on time-dependent problems. Chapters are written by leading researchers and users of model order reduction techniques and are based on presentations given at the 2019 edition of the workshop series Model Reduction of Complex Dynamical Systems - MODRED, held at the University of Graz in Austria. The topics considered can be divided into five categories: system-theoretic methods, such as balanced truncation, Hankel norm approximation, and reduced-basis methods; data-driven methods, including Loewner matrix and pencil-based approaches, dynamic mode decomposition, and kernel-based methods; surrogate modeling for design and optimization, with special emphasis on control and data assimilation; model reduction methods in applications, such as control and network systems, computational electromagnetics, structural mechanics, and fluid dynamics; and model order reduction software packages and benchmarks. This volume will be an ideal resource for graduate students and researchers in all areas of model reduction, as well as those working in applied mathematics and theoretical informatics.
This book presents mathematical models of demand-side management programs, together with operational and control problems for power and renewable energy systems. It reflects the need for optimal operation and control of today's electricity grid at both the supply and demand spectrum of the grid. This need is further compounded by the advent of smart grids, which has led to increased customer/consumer participation in power and renewable energy system operations. The book begins by giving an overview of power and renewable energy systems, demand-side management programs and algebraic modeling languages. The overview includes detailed consideration of appliance scheduling algorithms, price elasticity matrices and demand response incentives. Furthermore, the book presents various power system operational and control mathematical formulations, incorporating demand-side management programs. The mathematical formulations developed are modeled and solved using the Advanced Interactive Multidimensional Modeling System (AIMMS) software, which offers a powerful yet simple algebraic modeling language for solving optimization problems. The book is extremely useful for all power system operators and planners who are concerned with optimal operational procedures for managing today's complex grids, a context in which customers are active participants and can curb/control their demand. The book details how AIMMS can be a useful tool in optimizing power grids and also offers a valuable research aid for students and academics alike.
This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.
This bookdescribes computational financetools. It covers
fundamental numerical analysis and computational techniques, such
asoption pricing, and givesspecial attention tosimulation and
optimization. Many chapters are organized as case studies
aroundportfolio insurance and risk estimation problems. In
particular, several chapters explain optimization heuristics and
how to use them for portfolio selection and in calibration of
estimation and option pricing models. Such practical examples allow
readers to learn the steps for solving specific problems and apply
these steps to others. At the same time, the applications are
relevant enough to make the book a useful reference. Matlab and R
sample code is provided in the text and can be downloaded from the
book's website.
This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his graduate students, consisting of Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Democratic Particle Swarm Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which are developed by other authors and have been successfully applied to various optimization problems. These consist of Partical Swarm Optimization, Big Band Big Crunch algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm and Chaos Embedded Metaheuristic Algorithm. Finally a multi-objective Optimization is presented to Solve large scale structural problems based on the Charged System Search algorithm, In the second edition seven new chapters are added consisting of Enhance colliding bodies optimization, Global sensitivity analysis, Tug of War Optimization, Water evaporation optimization, Vibrating System Optimization and Cyclical Parthenogenesis Optimization algorithm. In the third edition, five new chapters are included consisting of the recently developed algorithms. These are Shuffled Shepherd Optimization Algorithm, Set Theoretical Shuffled Shepherd Optimization Algorithm, Set Theoretical Teaching-Learning-Based Optimization Algorithm, Thermal Exchange Metaheuristic Optimization Algorithm, and Water Strider Optimization Algorithm and Its Enhancement. The concepts and algorithm presented in this book are not only applicable to optimization of skeletal structure, finite element models, but can equally be utilized for optimal design of other systems such as hydraulic and electrical networks.
This book is about algebraic and differential methods, as well as fractional calculus, applied to diagnose and reject faults in nonlinear systems, which are of integer or fractional order. This represents an extension of a very important and widely studied problem in control theory, namely fault diagnosis and rejection (using differential algebraic approaches), to systems presenting fractional dynamics, i.e. systems whose dynamics are represented by derivatives and integrals of non-integer order. The authors offer a thorough overview devoted to fault diagnosis and fault-tolerant control applied to fractional-order and integer-order dynamical systems, and they introduce new methodologies for control and observation described by fractional and integer models, together with successful simulations and real-time applications. The basic concepts and tools of mathematics required to understand the methodologies proposed are all clearly introduced and explained. Consequently, the book is useful as supplementary reading in courses of applied mathematics and nonlinear control theory. This book is meant for engineers, mathematicians, physicists and, in general, to researchers and postgraduate students in diverse areas who have a minimum knowledge of calculus. It also contains advanced topics for researchers and professionals interested in the area of states and faults estimation.
This book discusses comprehensively the advanced manufacturing processes, including illustrative examples of the processes, mathematical modeling, and the need to optimize associated parameter problems. In addition, it describes in detail the cohort intelligence methodology and its variants along with illustrations, to help readers gain a better understanding of the framework. The theoretical and statistical rigor is validated by comparing the solutions with evolutionary algorithms, simulation annealing, response surface methodology, the firefly algorithm, and experimental work. Lastly, the book critically reviews several socio-inspired optimization methods.
Composites have been studied for more than 150 years, and interest in their properties has been growing. This classic volume provides the foundations for understanding a broad range of composite properties, including electrical, magnetic, electromagnetic, elastic and viscoelastic, piezoelectric, thermal, fluid flow through porous materials, thermoelectric, pyroelectric, magnetoelectric, and conduction in the presence of a magnetic field (Hall effect). Exact solutions of the PDEs in model geometries provide one avenue of understanding composites; other avenues include microstructure-independent exact relations satisfied by effective moduli, for which the general theory is reviewed; approximation formulae for effective moduli; and series expansions for the fields and effective moduli that are the basis of numerical methods for computing these fields and moduli. The range of properties that composites can exhibit can be explored either through the model geometries or through microstructure-independent bounds on the properties. These bounds are obtained through variational principles, analytic methods, and Hilbert space approaches. Most interesting is when the properties of the composite are unlike those of the constituent materials, and there has been an explosion of interest in such composites, now known as metamaterials. The Theory of Composites surveys these aspects, among others, and complements the new body of literature that has emerged since the book was written. It remains relevant today by providing historical background, a compendium of numerous results, and through elucidating many of the tools still used today in the analysis of composite properties. This book is intended for applied mathematicians, physicists, and electrical and mechanical engineers. It will also be of interest to graduate students.
Process Plant Operating Procedures presents an introduction to the theory and applications of procedure synthesis that is primarily concerned with the task of conjecturing the sequence of controller (or operator) actions needed to achieve designated operational goals in a given system. In order to facilitate practical implementation, the formal problem statement, two alternative approaches, their validation methods and a series of realistic examples are provided. The authors explore Petri nets and automata to identify the best paths leading to the specified goal of operation. The model-building methods for characterising all components in the given system, as well as the required control specifications, are explained with simple examples. The sequential control actions and the corresponding time schedule can then be identified accordingly. This book exposes practitioners to an important area of plant operations, teaching them effective approaches for procedure synthesis, enabling them to construct and solve scheduling models, and providing them with tools for simulation and validation of procedures and schedules. It is written for readers with a basic understanding of process design and control activities, and it will appeal to engineers in diverse fields with an interest in synthesizing operating procedures in process plants. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control. |
![]() ![]() You may like...
Mathematical Modelling in Real Life…
Ewald Lindner, Alessandra Micheletti, …
Hardcover
R2,873
Discovery Miles 28 730
Recent Advances in Model Predictive…
Timm Faulwasser, Matthias A. Muller, …
Hardcover
R3,384
Discovery Miles 33 840
Intelligent Control - A Stochastic…
Kaushik Das Sharma, Amitava Chatterjee, …
Hardcover
R4,632
Discovery Miles 46 320
Radar Waveform Design based on…
Guolong Cui, Antonio Maio, …
Hardcover
Matheuristics - Algorithms and…
Vittorio Maniezzo, Marco Antonio Boschetti, …
Hardcover
R3,208
Discovery Miles 32 080
Probabilistic Reliability Analysis of…
Bart W. Tuinema, Jose L. Rueda Torres, …
Hardcover
R2,919
Discovery Miles 29 190
Flexible and Generalized Uncertainty…
Weldon A Lodwick, Luiz L. Salles-Neto
Hardcover
R2,632
Discovery Miles 26 320
Nature-Inspired Metaheuristic Algorithms…
Serdar Carbas, Abdurrahim Toktas, …
Hardcover
R5,633
Discovery Miles 56 330
Stream-Tube Method - A Complex-Fluid…
Jean-Robert Clermont, Amine Ammar
Hardcover
R5,276
Discovery Miles 52 760
|