![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
This book addresses the principles and applications of metaheuristic approaches in engineering and related fields. The first part covers metaheuristics tools and techniques such as ant colony optimization and Tabu search, and their applications to several classes of optimization problems. In turn, the book's second part focuses on a wide variety of metaheuristics applications in engineering and/or the applied sciences, e.g. in smart grids and renewable energy. In addition, the simulation codes for the problems discussed are included in an appendix for ready reference. Intended for researchers aspiring to learn and apply metaheuristic techniques, and gathering contributions by prominent experts in the field, the book offers readers an essential introduction to metaheuristics, its theoretical aspects and applications.
Curated by the Fields Institute for Research in Mathematical Sciences from their COVID-19 Math Modelling Seminars, this first in a series of volumes on the mathematics of public health allows readers to access the dominant ideas and techniques being used in this area, while indicating problems for further research. This work brings together experts in mathematical modelling from across Canada and the world, presenting the latest modelling methods as they relate to the COVID-19 pandemic. A primary aim of this book is to make the content accessible so that researchers share the core methods that may be applied elsewhere. The mathematical theories and technologies in this book can be used to support decision makers on critical issues such as projecting outbreak trajectories, evaluating public health interventions for infection prevention and control, developing optimal strategies to return to a new normal, and designing vaccine candidates and informing mass immunization program. Topical coverage includes: basic susceptible-exposed-infectious-recovered (SEIR) modelling framework modified and applied to COVID-19 disease transmission dynamics; nearcasting and forecasting for needs of critical medical resources including personal protective equipment (PPE); predicting COVID-19 mortality; evaluating effectiveness of convalescent plasma treatment and the logistic implementation challenges; estimating impact of delays in contact tracing; quantifying heterogeneity in contact mixing and its evaluation with social distancing; modelling point of care diagnostics of COVID-19; and understanding non-reporting and underestimation. Further, readers will have the opportunity to learn about current modelling methodologies and technologies for emerging infectious disease outbreaks, pandemic mitigation rapid response, and the mathematics behind them. The volume will help the general audience and experts to better understand the important role that mathematics has been playing during this on-going crisis in supporting critical decision-making by governments and public health agencies.
The sequential quadratic hamiltonian (SQH) method is a novel numerical optimization procedure for solving optimal control problems governed by differential models. It is based on the characterisation of optimal controls in the framework of the Pontryagin maximum principle (PMP). The SQH method is a powerful computational methodology that is capable of development in many directions. The Sequential Quadratic Hamiltonian Method: Solving Optimal Control Problems discusses its analysis and use in solving nonsmooth ODE control problems, relaxed ODE control problems, stochastic control problems, mixed-integer control problems, PDE control problems, inverse PDE problems, differential Nash game problems, and problems related to residual neural networks. This book may serve as a textbook for undergraduate and graduate students, and as an introduction for researchers in sciences and engineering who intend to further develop the SQH method or wish to use it as a numerical tool for solving challenging optimal control problems and for investigating the Pontryagin maximum principle on new optimisation problems. Feature Provides insight into mathematical and computational issues concerning optimal control problems, while discussing many differential models of interest in different disciplines. Suitable for undergraduate and graduate students and as an introduction for researchers in sciences and engineering. Accompanied by codes which allow the reader to apply the SQH method to solve many different optimal control and optimisation problems
In an expanding world with limited resources, optimization and uncertainty quantification have become a necessity when handling complex systems and processes. This book provides the foundational material necessary for those who wish to embark on advanced research at the limits of computability, collecting together lecture material from leading experts across the topics of optimization, uncertainty quantification and aerospace engineering. The aerospace sector in particular has stringent performance requirements on highly complex systems, for which solutions are expected to be optimal and reliable at the same time. The text covers a wide range of techniques and methods, from polynomial chaos expansions for uncertainty quantification to Bayesian and Imprecise Probability theories, and from Markov chains to surrogate models based on Gaussian processes. The book will serve as a valuable tool for practitioners, researchers and PhD students.
This book discusses systematic designs of stable adaptive fuzzy logic controllers employing hybridizations of Lyapunov strategy-based approaches/H theory-based approaches and contemporary stochastic optimization techniques. The text demonstrates how candidate stochastic optimization techniques like Particle swarm optimization (PSO), harmony search (HS) algorithms, covariance matrix adaptation (CMA) etc. can be utilized in conjunction with the Lyapunov theory/H theory to develop such hybrid control strategies. The goal of developing a series of such hybridization processes is to combine the strengths of both Lyapunov theory/H theory-based local search methods and stochastic optimization-based global search methods, so as to attain superior control algorithms that can simultaneously achieve desired asymptotic performance and provide improved transient responses. The book also demonstrates how these intelligent adaptive control algorithms can be effectively utilized in real-life applications such as in temperature control for air heater systems with transportation delay, vision-based navigation of mobile robots, intelligent control of robot manipulators etc.
This volume provides a timely survey of interactions between the calculus of variations and theoretical and applied mechanics. Chapters have been significantly expanded since preliminary versions appeared in a special issue of the Journal of Optimization Theory and Applications (184(1), 2020) on "Calculus of Variations in Mechanics and Related Fields". The variety of topics covered offers researchers an overview of problems in mechanics that can be analyzed with variational techniques, making this a valuable reference for researchers in the field. It also presents ideas for possible future areas of research, showing how the mastery of these foundational mathematical techniques can be used for many exciting applications. Specific topics covered include: Topology optimization Identification of material properties Optimal control Plastic flows Gradient polyconvexity Obstacle problems Quasi-monotonicity Variational Views in Mechanics will appeal to researchers in mathematics, solid-states physics, and mechanical, civil, and materials engineering.
This proceedings provides novel concepts and techniques for air traffic management (ATM) and communications, navigation, and surveillance (CNS) systems. The volume consists of selected papers from the 5th ENRI International Workshop on ATM/CNS (EIWAC2017) held in Tokyo in November 2017, the theme of which was "Drafting Future Skies". Included are key topics to realize safer and more efficient skies in the future, linked to the integrated conference theme consisting of long-term visions based on presentations from various fields. The proceedings is dedicated not only to researchers, academicians, and university students, but also to engineers in the industry, air navigation service providers (ANSPs), and regulators of aviation.
This book gravitates on the prominent theories and recent developments of swarm intelligence methods, and their application in both synthetic and real-world optimization problems. The special interest will be placed in those algorithmic variants where biological processes observed in nature have underpinned the core operators underlying their search mechanisms. In other words, the book centers its attention on swarm intelligence and nature-inspired methods for efficient optimization and problem solving. The content of this book unleashes a great opportunity for researchers, lecturers and practitioners interested in swarm intelligence, optimization problems and artificial intelligence.
This book introduces readers to advanced data science techniques for signal mining in connection with agriculture. It shows how to apply heuristic modeling to improve farm-level efficiency, and how to use sensors and data intelligence to provide closed-loop feedback, while also providing recommendation techniques that yield actionable insights. The book also proposes certain macroeconomic pricing models, which data-mine macroeconomic signals and the influence of global economic trends on small-farm sustainability to provide actionable insights to farmers, helping them avoid financial disasters due to recurrent economic crises. The book is intended to equip current and future software engineering teams and operations research experts with the skills and tools they need in order to fully utilize advanced data science, artificial intelligence, heuristics, and economic models to develop software capabilities that help to achieve sustained food security for future generations.
MATRIX is Australia's international, residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each lasting 1-4 weeks. This book is a scientific record of the five programs held at MATRIX in its first year, 2016: - Higher Structures in Geometry and Physics - Winter of Disconnectedness - Approximation and Optimisation - Refining C*-Algebraic Invariants for Dynamics using KK-theory - Interactions between Topological Recursion, Modularity, Quantum Invariants and Low- dimensional Topology The MATRIX Scientific Committee selected these programs based on their scientific excellence and the participation rate of high-profile international participants. Each program included ample unstructured time to encourage collaborative research; some of the longer programs also included an embedded conference or lecture series. The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on selected topics related to the MATRIX program; the remaining contributions are predominantly lecture notes based on talks or activities at MATRIX.
This book provides a comprehensive overview of the most important and frequently considered optimization problems concerning cutting and packing. Based on appropriate modeling approaches for the problems considered, it offers an introduction to the related solution methods. It also addresses aspects like performance results for heuristic algorithms and bounds of the optimal value, as well as the packability of a given set of objects within a predefined container. The problems discussed arise in a wide variety of different fields of application and research, and as such, the fundamental knowledge presented in this book make it a valuable resource for students, practitioners, and researchers who are interested in dealing with such tasks.
This book describes the next generation of industry-Industry 4.0-and how it holds the promise of increased flexibility in manufacturing, along with automation, better quality, and improved productivity. The authors discuss how it thus enables companies to cope with the challenges of producing increasingly individualized products with a short lead-time to market and higher quality. The authors posit that intelligent cloud services and resource sharing play an important role in Industry 4.0 anticipated Fourth Industrial Revolution. This book serves the different issues and challenges in cloud resource management CRM techniques with proper propped solution for IT organizations. The book features chapters based on the characteristics of autonomic computing with its applicability in CRM. Each chapter features the techniques and analysis of each mechanism to make better resource management in cloud.
Discover the subject of optimization in a new light with this modern and unique treatment. Includes a thorough exposition of applications and algorithms in sufficient detail for practical use, while providing you with all the necessary background in a self-contained manner. Features a deeper consideration of optimal control, global optimization, optimization under uncertainty, multiobjective optimization, mixed-integer programming and model predictive control. Presents a complete coverage of formulations and instances in modelling where optimization can be applied for quantitative decision-making. As a thorough grounding to the subject, covering everything from basic to advanced concepts and addressing real-life problems faced by modern industry, this is a perfect tool for advanced undergraduate and graduate courses in chemical and biochemical engineering.
This textbook treats graph colouring as an algorithmic problem, with a strong emphasis on practical applications. The author describes and analyses some of the best-known algorithms for colouring graphs, focusing on whether these heuristics can provide optimal solutions in some cases; how they perform on graphs where the chromatic number is unknown; and whether they can produce better solutions than other algorithms for certain types of graphs, and why. The introductory chapters explain graph colouring, complexity theory, bounds and constructive algorithms. The author then shows how advanced, graph colouring techniques can be applied to classic real-world operational research problems such as designing seating plans, sports scheduling, and university timetabling. He includes many examples, suggestions for further reading, and historical notes, and the book is supplemented by an online suite of downloadable code. The book is of value to researchers, graduate students, and practitioners in the areas of operations research, theoretical computer science, optimization, and computational intelligence. The reader should have elementary knowledge of sets, matrices, and enumerative combinatorics.
This book presents the latest research in the fields of reliability theory and its applications, providing a comprehensive overview of reliability engineering and discussing various tools, techniques, strategies and methods within these areas. Reliability analysis is one of the most multidimensional topics in the field of systems reliability engineering, and while its rapid development creates opportunities for industrialists and academics, it is also means that it is hard to keep up to date with the research taking place. By gathering findings from institutions around the globe, the book offers insights into the international developments in the field. As well as discussing the current areas of research, it also identifies knowledge gaps in reliability theory and its applications and highlights fruitful avenues for future research. Covering topics from life cycle sustainability to performance analysis of cloud computing, this book is ideal for upper undergraduate and postgraduate researchers studying reliability engineering.
This book is one of the first to include an extensive discussion of integrated public transport planning. In times of growing urban populations and increasing environmental awareness, the importance of optimizing public transport systems is ever-developing. Three different aspects are presented: line planning, timetabling, and vehicle scheduling. Classically, challenges concerning these three aspects of planning are solved sequentially. Due to their high interdependence, the author presents a clear and detailed analysis of innovative, integrated models with accompanied numerical experiments performed to assess, and often support, the benefits of integration. The book will appeal to a wide readership ranging from graduate students to researchers.
Mathematical methods and theories with interdisciplinary applications are presented in this book. The eighteen contributions presented in this Work have been written by eminent scientists; a few papers are based on talks which took place at the International Conference at the Hellenic Artillery School in May 2015. Each paper evaluates possible solutions to long-standing problems such as the solvability of the direct electromagnetic scattering problem, geometric approaches to cyber security, ellipsoid targeting with overlap, non-equilibrium solutions of dynamic networks, measuring ballistic dispersion, elliptic regularity theory for the numerical solution of variational problems, approximation theory for polynomials on the real line and the unit circle, complementarity and variational inequalities in electronics, new two-slope parameterized achievement scalarizing functions for nonlinear multiobjective optimization, and strong and weak convexity of closed sets in a Hilbert space. Graduate students, scientists, engineers and researchers in pure and applied mathematical sciences, operations research, engineering, and cyber security will find the interdisciplinary scientific perspectives useful to their overall understanding and further research.
This text, based on the author's teaching at Ecole Polytechnique, introduces the reader to the world of mathematical modelling and numerical simulation. Covering the finite difference method; variational formulation of elliptic problems; Sobolev spaces; elliptical problems; the finite element method; Eigenvalue problems; evolution problems; optimality conditions and algorithms and methods of operational research, and including a several exercises throughout, this is an ideal text for advanced undergraduate students and graduates in applied mathematics, engineering, computer science, and the physical sciences.
This book, which is the first of two volumes, presents, in a unique way, some of the most relevant research tools of modern analysis. This work empowers young researchers with all the necessary techniques to explore the various subfields of this broad subject, and introduces relevant frameworks where these tools can be immediately deployed. Volume I starts with the foundations of modern analysis. The first three chapters are devoted to topology, measure theory, and functional analysis. Chapter 4 offers a comprehensive analysis of the main function spaces, while Chapter 5 covers more concrete subjects, like multivariate analysis, which are closely related to applications and more difficult to find in compact form. Chapter 6 deals with smooth and non-smooth calculus of functions; Chapter 7 introduces certain important classes of nonlinear operators; and Chapter 8 complements the previous three chapters with topics of variational analysis. Each chapter of this volume finishes with a list of problems - handy for understanding and self-study - and historical notes that give the reader a more vivid picture of how the theory developed. Volume II consists of various applications using the tools and techniques developed in this volume. By offering a clear and wide picture of the tools and applications of modern analysis, this work can be of great benefit not only to mature graduate students seeking topics for research, but also to experienced researchers with an interest in this vast and rich field of mathematics.
This book examines the economics of natural resource markets and pricing, as well as the field of natural resource economics in general. It presents the key contributions to this field of research, including the pioneering works and contemporary studies. The book highlights the basic principles and ideas underlying theoretical models of resource pricing. The models considered in the book underline the fundamental determinants of resource prices and the economic nature of rents for non-renewable and renewable resources. Besides the classical theory of exhaustible resource economics, the book includes several issues that are of high importance for global economic growth, such as the transition to alternative energy and the economics of climate change. The authors also consider the issues of commodity pricing and a resource cartel's activity that are relevant to the world oil market. The book provides analytical solutions illustrated with numerical examples. It allows an intuitive understanding of the subject and the model inferences through graphical illustrations and an informal introduction. It, therefore, is a must-read for everybody interested in a better understanding of resource prices, resource markets, and resource economics.
This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.
This book is devoted to the study of classes of optimal control problems arising in economic growth theory, related to the Robinson-Solow-Srinivasan (RSS) model. The model was introduced in the 1960s by economists Joan Robinson, Robert Solow, and Thirukodikaval Nilakanta Srinivasan and was further studied by Robinson, Nobuo Okishio, and Joseph Stiglitz. Since then, the study of the RSS model has become an important element of economic dynamics. In this book, two large general classes of optimal control problems, both of them containing the RSS model as a particular case, are presented for study. For these two classes, a turnpike theory is developed and the existence of solutions to the corresponding infinite horizon optimal control problems is established. The book contains 9 chapters. Chapter 1 discusses turnpike properties for some optimal control problems that are known in the literature, including problems corresponding to the RSS model. The first class of optimal control problems is studied in Chaps. 2-6. In Chap. 2, infinite horizon optimal control problems with nonautonomous optimality criteria are considered. The utility functions, which determine the optimality criterion, are nonconcave. This class of models contains the RSS model as a particular case. The stability of the turnpike phenomenon of the one-dimensional nonautonomous concave RSS model is analyzed in Chap. 3. The following chapter takes up the study of a class of autonomous nonconcave optimal control problems, a subclass of problems considered in Chap. 2. The equivalence of the turnpike property and the asymptotic turnpike property, as well as the stability of the turnpike phenomenon, is established. Turnpike conditions and the stability of the turnpike phenomenon for nonautonomous problems are examined in Chap. 5, with Chap. 6 devoted to the study of the turnpike properties for the one-dimensional nonautonomous nonconcave RSS model. The utility functions, which determine the optimality criterion, are nonconcave. The class of RSS models is identified with a complete metric space of utility functions. Using the Baire category approach, the turnpike phenomenon is shown to hold for most of the models. Chapter 7 begins the study of the second large class of autonomous optimal control problems, and turnpike conditions are established. The stability of the turnpike phenomenon for this class of problems is investigated further in Chaps. 8 and 9.
With the diversification of Internet services and the increase in mobile users, efficient management of network resources has become an extremely important issue in the field of wireless communication networks (WCNs). Adaptive resource management is an effective tool for improving the economic efficiency of WCN systems as well as network design and construction, especially in view of the surge in mobile device demands. This book presents modelling methods based on queueing theory and Markov processes for a wide variety of WCN systems, as well as precise and approximate analytical solution methods for the numerical evaluation of the system performance. This is the first book to provide an overview of the numerical analyses that can be gleaned by applying queueing theory, traffic theory and other analytical methods to various WCN systems. It also discusses the recent advances in the resource management of WCNs, such as broadband wireless access networks, cognitive radio networks, and green cloud computing. It assumes a basic understanding of computer networks and queueing theory, and familiarity with stochastic processes is also recommended. The analysis methods presented in this book are useful for first-year-graduate or senior computer science and communication engineering students. Providing information on network design and management, performance evaluation, queueing theory, game theory, intelligent optimization, and operations research for researchers and engineers, the book is also a valuable reference resource for students, analysts, managers and anyone in the industry interested in WCN system modelling, performance analysis and numerical evaluation.
Optimization is a field important in its own right but is also integral to numerous applied sciences, including operations research, management science, economics, finance and all branches of mathematics-oriented engineering. Constrained optimization models are one of the most widely used mathematical models in operations research and management science. This book gives a modern and well-balanced presentation of the subject, focusing on theory but also including algorithims and examples from various real-world applications. The text is easy to read and accessible to anyone with a knowledge of multi-dimensional calculus, linear algebra and basic numerical methods. Detailed examples and counter-examples are provided--as are exercises, solutions and helpful hints, and Matlab/Maple supplements. The intended readership is advanced undergraduates, graduates, and professionals in any of the applied fields.
DEA is computational at its core and this book will be one of several books that we will look to publish on the computational aspects of DEA. This book by Zhu and Cook will deal with the micro aspects of handling and modeling data issues in modeling DEA problems. DEA's use has grown with its capability of dealing with complex service industry and the public service domain types of problems that require modeling both qualitative and quantitative data. This will be a handbook treatment dealing with specific data problems including the following: (1) imprecise data, (2) inaccurate data, (3) missing data, (4) qualitative data, (5) outliers, (6) undesirable outputs, (7) quality data, (8) statistical analysis, (9) software and other data aspects of modeling complex DEA problems. In addition, the book will demonstrate how to visualize DEA results when the data is more than 3-dimensional, and how to identify efficiency units quickly and accurately. |
You may like...
Radar Waveform Design based on…
Guolong Cui, Antonio Maio, …
Hardcover
Numerical Methods and Optimization in…
Manfred Gilli, Dietmar Maringer, …
Hardcover
R2,188
Discovery Miles 21 880
Bio-Inspired Collaborative Intelligent…
Yongsheng Ding, Lei Chen, …
Hardcover
R4,890
Discovery Miles 48 900
Computational Optimization Techniques…
Muhammad Sarfraz, Samsul Ariffin Abdul Karim
Hardcover
R3,099
Discovery Miles 30 990
|