![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
Whether costs are to be reduced, profits to be maximized, or scarce resources to be used wisely, optimization methods are available to guide decision making. In online optimization the main issue is incomplete data, and the scientific challenge: How well can an online algorithm perform? Can one guarantee solution quality, even without knowing all data in advance? In real-time optimization there is an additional requirement, decisions have to be computed very fast in relation to the time frame of the instance we consider. Online and real-time optimization problems occur in all branches of optimization. These areas have developed their own techniques but they are addressing the same issues: quality, stability, and robustness of the solutions. To fertilize this emerging topic of optimization theory and to foster cooperation between the different branches of optimization, the Deutsche Forschungsgemeinschaft (DFG) has supported a Priority Programme "Online Optimization of Large Systems".
This book introduces readers to the "Jaya" algorithm, an advanced optimization technique that can be applied to many physical and engineering systems. It describes the algorithm, discusses its differences with other advanced optimization techniques, and examines the applications of versions of the algorithm in mechanical, thermal, manufacturing, electrical, computer, civil and structural engineering. In real complex optimization problems, the number of parameters to be optimized can be very large and their influence on the goal function can be very complicated and nonlinear in character. Such problems cannot be solved using classical methods and advanced optimization methods need to be applied. The Jaya algorithm is an algorithm-specific parameter-less algorithm that builds on other advanced optimization techniques. The application of Jaya in several engineering disciplines is critically assessed and its success compared with other complex optimization techniques such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), and other recently developed algorithms.
With the ever increasing growth of services and the corresponding demand for Quality of Service requirements that are placed on IP-based networks, the essential aspects of network planning will be critical in the coming years. A wide number of problems must be faced in order for the next generation of IP networks to meet their expected performance. With Performance Evaluation and Planning Methods for the Next Generation Internet, the editors have prepared a volume that outlines and illustrates these developing trends. A number of the problems examined and analyzed in the book are: -The design of IP networks and guaranteed performance -Performances of virtual private networks -Network design and reliability -The issues of pricing, routing and the management of QoS -Design problems arising from wireless networks -Controlling network congestion -New applications spawned from Internet use -Several new models are introduced that will lead to better Internet performance These are a few of the problem areas addressed in the book and only a selective example of some of the coming key areas in networks requiring performance evaluation and network planning.
It was in the middle of the 1980s, when the seminal paper by Kar markar opened a new epoch in nonlinear optimization. The importance of this paper, containing a new polynomial-time algorithm for linear op timization problems, was not only in its complexity bound. At that time, the most surprising feature of this algorithm was that the theoretical pre diction of its high efficiency was supported by excellent computational results. This unusual fact dramatically changed the style and direc tions of the research in nonlinear optimization. Thereafter it became more and more common that the new methods were provided with a complexity analysis, which was considered a better justification of their efficiency than computational experiments. In a new rapidly develop ing field, which got the name "polynomial-time interior-point methods", such a justification was obligatory. Afteralmost fifteen years of intensive research, the main results of this development started to appear in monographs [12, 14, 16, 17, 18, 19]. Approximately at that time the author was asked to prepare a new course on nonlinear optimization for graduate students. The idea was to create a course which would reflect the new developments in the field. Actually, this was a major challenge. At the time only the theory of interior-point methods for linear optimization was polished enough to be explained to students. The general theory of self-concordant functions had appeared in print only once in the form of research monograph [12].
As optimization researchers tackle larger and larger problems, scale interactions play an increasingly important role. One general strategy for dealing with a large or difficult problem is to partition it into smaller ones, which are hopefully much easier to solve, and then work backwards towards the solution of original problem, using a solution from a previous level as a starting guess at the next level. This volume contains 22 chapters highlighting some recent research. The topics of the chapters selected for this volume are focused on the development of new solution methodologies, including general multilevel solution techniques, for tackling difficult, large-scale optimization problems that arise in science and industry. Applications presented in the book include but are not limited to the circuit placement problem in VLSI design, a wireless sensor location problem, optimal dosages in the treatment of cancer by radiation therapy, and facility location.
V-INVEX FUNCTIONS AND VECTOR OPTIMIZATION summarizes and synthesizes an aspect of research work that has been done in the area of Generalized Convexity over the past several decades. Specifically, the book focuses on V-invex functions in vector optimization that have grown out of the work of Jeyakumar and Mond in the 1990?s. V-invex functions are areas in which there has been much interest because it allows researchers and practitioners to address and provide better solutions to problems that are nonlinear, multi-objective, fractional, and continuous in nature. Hence, V-invex functions have permitted work on a whole new class of vector optimization applications. There has been considerable work on vector optimization by some highly distinguished researchers including Kuhn, Tucker, Geoffrion, Mangasarian, Von Neuman, Schaiible, Ziemba, etc. The authors have integrated this related research into their book and demonstrate the wide context from which the area has grown and continues to grow. The result is a well-synthesized, accessible, and usable treatment for students, researchers, and practitioners in the areas of OR, optimization, applied mathematics, engineering, and their work relating to a wide range of problems which include financial institutions, logistics, transportation, traffic management, etc.
This book aims to present, in a unified approach, a series of mathematical results con cerning triangular norm-based measures and a class of cooperative games with Juzzy coalitions. Our approach intends to emphasize that triangular norm-based measures are powerful tools in exploring the coalitional behaviour in 'such games. They not and simplify some technical aspects of the already classical axiomatic the only unify ory of Aumann-Shapley values, but also provide new perspectives and insights into these results. Moreover, this machinery allows us to obtain, in the game theoretical context, new and heuristically meaningful information, which has a significant impact on balancedness and equilibria analysis in a cooperative environment. From a formal point of view, triangular norm-based measures are valuations on subsets of a unit cube [0, 1]X which preserve dual binary operations induced by trian gular norms on the unit interval [0, 1]. Triangular norms (and their dual conorms) are algebraic operations on [0,1] which were suggested by MENGER [1942] and which proved to be useful in the theory of probabilistic metric spaces (see also [WALD 1943]). The idea of a triangular norm-based measure was implicitly used under various names: vector integrals [DVORETZKY, WALD & WOLFOWITZ 1951], prob abilities oj Juzzy events [ZADEH 1968], and measures on ideal sets [AUMANN & SHAPLEY 1974, p. 152].
This book collects the latest theoretical and technological concepts in the design and control of various linear machines and drive systems. Discussing advances in the new linear machine topologies, integrated modeling, multi-objective optimization techniques, and high-performance control strategies, it focuses on emerging applications of linear machines in transportation and energy systems. The book presents both theoretical and practical/experimental results, providing a consistent compilation of fundamental theories, a compendium of current research and development activities as well as new directions to overcome critical limitations.
Line and hyperplane location problems play an important role not only in operations research and location theory, but also in computational geometry and robust statistics. This book provides a survey on line and hyperplane location combining analytical and geometrical methods. The major portion of the text presents new results on this topic, including the extension of some special cases to all distances derived from norms and a discussion of restricted problems in the plane. Almost all results are proven in the text and most of them are illustrated by examples. Furthermore, relations to classical facility location and to problems in computational geometry are pointed out. Audience: The book is suitable for researchers, lecturers, and graduate students working in the fields of location theory or computational geometry.
In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design.
These proceedings consist of 30 selected research papers based on results presented at the 10th Balkan Conference & 1st International Symposium on Operational Research (BALCOR 2011) held in Thessaloniki, Greece, September 22-24, 2011. BALCOR is an established biennial conference attended by a large number of faculty, researchers and students from the Balkan countries but also from other European and Mediterranean countries as well. Over the past decade, the BALCOR conference has facilitated the exchange of scientific and technical information on the subject of Operations Research and related fields such as Mathematical Programming, Game Theory, Multiple Criteria Decision Analysis, Information Systems, Data Mining and more, in order to promote international scientific cooperation. The carefully selected and refereed papers present important recent developments and modern applications and will serve as excellent reference for students, researchers and practitioners in these disciplines. "
With a focus on the interplay between mathematics and applications of imaging, the first part covers topics from optimization, inverse problems and shape spaces to computer vision and computational anatomy. The second part is geared towards geometric control and related topics, including Riemannian geometry, celestial mechanics and quantum control. Contents: Part I Second-order decomposition model for image processing: numerical experimentation Optimizing spatial and tonal data for PDE-based inpainting Image registration using phase amplitude separation Rotation invariance in exemplar-based image inpainting Convective regularization for optical flow A variational method for quantitative photoacoustic tomography with piecewise constant coefficients On optical flow models for variational motion estimation Bilevel approaches for learning of variational imaging models Part II Non-degenerate forms of the generalized Euler Lagrange condition for state-constrained optimal control problems The Purcell three-link swimmer: some geometric and numerical aspects related to periodic optimal controls Controllability of Keplerian motion with low-thrust control systems Higher variational equation techniques for the integrability of homogeneous potentials Introduction to KAM theory with a view to celestial mechanics Invariants of contact sub-pseudo-Riemannian structures and Einstein Weyl geometry Time-optimal control for a perturbed Brockett integrator Twist maps and Arnold diffusion for diffeomorphisms A Hamiltonian approach to sufficiency in optimal control with minimal regularity conditions: Part I Index
Evolutionary computation techniques have attracted increasing att- tions in recent years for solving complex optimization problems. They are more robust than traditional methods based on formal logics or mathematical programming for many real world OR/MS problems. E- lutionary computation techniques can deal with complex optimization problems better than traditional optimization techniques. However, most papers on the application of evolutionary computation techniques to Operations Research /Management Science (OR/MS) problems have scattered around in different journals and conference proceedings. They also tend to focus on a very special and narrow topic. It is the right time that an archival book series publishes a special volume which - cludes critical reviews of the state-of-art of those evolutionary com- tation techniques which have been found particularly useful for OR/MS problems, and a collection of papers which represent the latest devel- ment in tackling various OR/MS problems by evolutionary computation techniques. This special volume of the book series on Evolutionary - timization aims at filling in this gap in the current literature. The special volume consists of invited papers written by leading - searchers in the field. All papers were peer reviewed by at least two recognised reviewers. The book covers the foundation as well as the practical side of evolutionary optimization.
In mathematical modeling of processes one often encounters optimization problems involving more than one objective function, so that Multiobjective Optimization (or Vector Optimization) has received new impetus. The growing interest in multiobjective problems, both from the theoretical point of view and as it concerns applications to real problems, asks for a general scheme which embraces several existing developments and stimulates new ones. In this book the authors provide the newest results and applications of this quickly growing field. This book will be of interest to graduate students in mathematics, economics, and engineering, as well as researchers in pure and applied mathematics, economics, engineering, geography, and town planning. A sound knowledge of linear algebra and introductory real analysis should provide readers with sufficient background for this book.
This book considers problems of optimization arising in the design of electromagnetic radiators and receivers. The authors develop a systematic general theory that can be applied to a wide class of structures. The theory is illustrated with familiar, simple examples and indications of how the results can be applied to more complicated structures. The final chapter introduces techniques from multicriteria optimization in antenna design. The material is intended for a dual audience of mathematicians and mathematically-sophisticated engineers. References to both the mathematics and engineering literature help guide the reader through the necessary mathematical background.
The aim of this volume is to show how Fuzzy Sets and Systems can help to provide robust and adaptive heuristic optimization algorithms in a variety of situations. The book presents the state of the art and gives a broad overview on the real practical applications that Fuzzy Sets, based on heuristic algorithms, have.
This special volume is dedicated to Boris M. Mordukhovich, on the occasion of his 60th birthday, and aims to celebrate his fundamental contributionsto variational analysis, generalizeddifferentiationand their applications.A main exampleof these contributions is Boris' recent opus magnus "Variational Analysis and Generalized Differentiation"(vols. I and II) [2,3]. A detailed explanationand careful description of Boris' research and achievements can be found in [1]. Boris' active work and jovial attitude have constantly inspired researchers of several generations, with whom he has generously shared his knowledgeand ent- siasm, along with his well-known warmth and human touch. Variationalanalysis is a rapidlygrowing?eld within pure and applied mathem- ics, with numerous applications to optimization, control theory, economics, en- neering, and other disciplines. Each of the 12 chapters of this volume is a carefully reviewed paper in the ?eld of variational analysis and related topics. Many chapters of this volume were presented at the International Symposium on Variational Analysis and Optimization (ISVAO), held in the Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan, from November 28 to November 30, 2008. The symposium was organized in honour of Boris' 60thbirthday.It broughttogetherBorisandotherresearchersto discusssta- of-the-art results in variational analysis and its applications, with emphasis on op- mization and control. We thank the organizers and participants of the symposium, who made the symposium a highly bene?cial and enjoyable event. We are also grateful to all the authors of this special volume, who have taken the opportunityto celebrate Boris' birthdayand his decadesof contributionsto the area.
Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches covers recent developments in optimization techniques for addressing several computational chemistry and biology problems. A tantalizing problem that cuts across the fields of computational chemistry, biology, medicine, engineering and applied mathematics is how proteins fold. Global and local optimization provide a systematic framework of conformational searches for the prediction of three-dimensional protein structures that represent the global minimum free energy, as well as low-energy biomolecular conformations. Each contribution in the book is essentially expository in nature, but of scholarly treatment. The topics covered include advances in local and global optimization approaches for molecular dynamics and modeling, distance geometry, protein folding, molecular structure refinement, protein and drug design, and molecular and peptide docking. Audience: The book is addressed not only to researchers in mathematical programming, but to all scientists in various disciplines who use optimization methods in solving problems in computational chemistry and biology.
This volume covers some of the topics that are related to the rapidly growing field of biomedical informatics. In June 11-12, 2010 a workshop entitled 'Optimization and Data Analysis in Biomedical Informatics' was organized at The Fields Institute. Following this event invited contributions were gathered based on the talks presented at the workshop, and additional invited chapters were chosen from world's leading experts. In this publication, the authors share their expertise in the form of state-of-the-art research and review chapters, bringing together researchers from different disciplines and emphasizing the value of mathematical methods in the areas of clinical sciences. This work is targeted to applied mathematicians, computer scientists, industrial engineers, and clinical scientists who are interested in exploring emerging and fascinating interdisciplinary topics of research. It is designed to further stimulate and enhance fruitful collaborations between scientists from different disciplines.
Many questions dealing with solvability, stability and solution methods for va- ational inequalities or equilibrium, optimization and complementarity problems lead to the analysis of certain (perturbed) equations. This often requires a - formulation of the initial model being under consideration. Due to the specific of the original problem, the resulting equation is usually either not differ- tiable (even if the data of the original model are smooth), or it does not satisfy the assumptions of the classical implicit function theorem. This phenomenon is the main reason why a considerable analytical inst- ment dealing with generalized equations (i.e., with finding zeros of multivalued mappings) and nonsmooth equations (i.e., the defining functions are not c- tinuously differentiable) has been developed during the last 20 years, and that under very different viewpoints and assumptions. In this theory, the classical hypotheses of convex analysis, in particular, monotonicity and convexity, have been weakened or dropped, and the scope of possible applications seems to be quite large. Briefly, this discipline is often called nonsmooth analysis, sometimes also variational analysis. Our book fits into this discipline, however, our main intention is to develop the analytical theory in close connection with the needs of applications in optimization and related subjects. Main Topics of the Book 1. Extended analysis of Lipschitz functions and their generalized derivatives, including "Newton maps" and regularity of multivalued mappings. 2. Principle of successive approximation under metric regularity and its - plication to implicit functions.
This book deals with the aspects of modeling and solving real-world optimiza- tion problems in a unique combination. It treats systematically the major mod- eling languages and modeling systems used to solve mathematical optimization problems. The book is an offspring ofthe 71 st Meeting of the GOR (Gesellschaft fill Operations Research) Working Group Mathematical Optimization in Real Life which was held under the title Modeling Languages in Mathematical Op- timization during April 23-25, 2003 in the German Physics Society Confer- ence Building in Bad Honnef, Germany. The modeling language providers AIMMS Johannes Bisschop, Paragon Decision Technology B. V, Haarlem, The Netherlands, AMPL Bob Fourer, Northwestern Univ.; David M. Gay, AMPL Optimization LLC. , NJ, GAMS Alexander Meeraus, GAMS Development Corporation, Washington D. C. , Mosel Bob Daniel, Dash Optimization, Blisworth, UK, MPL Bjami Krist jansson, Maximal Software, Arlington, VA, NOP-2 Hermann Schichl, Vienna University, Austria, PCOMP Klaus Schittkowski, Bayreuth University, Germany, and OPL Sofiane Oussedik, ILOG Inc. , Paris, France gave deep insight into their motivations and conceptual design features of their software, highlighted their advantages but also critically discussed their limits. The participants benefited greatly from this symposium which gave a useful overview and orientation on today's modeling languages in optimization. Roughly speaking, a modeling language serves the need to pass data and a mathematical model description to a solver in the same way that people, es- Of course, in pecially mathematicians describe those problems to each other.
A cooperative system is defined to be multiple dynamic entities that share information or tasks to accomplish a common, though perhaps not singular, objective. Examples of cooperative control systems might include: robots operating within a manufacturing cell, unmanned aircraft in search and rescue operations or military surveillance and attack missions, arrays of micro satellites that form a distributed large aperture radar, employees operating within an organization, and software agents. The term entity is most often associated with vehicles capable of physical motion such as robots, automobiles, ships, and aircraft, but the definition extends to any entity concept that exhibits a time dependent behavior. Critical to cooperation is communication, which may be accomplished through active message passing or by passive observation. It is assumed that cooperation is being used to accomplish some common purpose that is greater than the purpose of each individual, but we recognize that the individual may have other objectives as well, perhaps due to being a member of other caucuses. This implies that cooperation may assume hierarchical forms as well. The decision-making processes (control) are typically thought to be distributed or decentralized to some degree. For if not, a cooperative system could always be modeled as a single entity. The level of cooperation may be indicated by the amount of information exchanged between entities. Cooperative systems may involve task sharing and can consist of heterogeneous entities. Mixed initiative systems are particularly interesting heterogeneous systems since they are composed of humans and machines. Finally, one is often interested in how cooperative systems perform under noisy or adversary conditions. In December 2000, the Air Force Research Laboratory and the University of Florida successfully hosted the first Workshop on Cooperative Control and Optimization in Gainesville, Florida. This book contains selected refereed papers summarizing the participants' research in control and optimization of cooperative systems. Audience: Faculty, graduate students, and researchers in optimization and control, computer sciences and engineering.
This volume covers recent developments in the design, operation, and management of mobile telecommunication and computer systems. Uncertainty regarding loading and system parameters leads to challenging optimization and robustness issues. Stochastic modeling combined with optimization theory ensures the optimum end-to-end performance of telecommunication or computer network systems. In view of the diverse design options possible, supporting models have many adjustable parameters and choosing the best set for a particular performance objective is delicate and time-consuming. An optimization based approach determines the optimal possible allocation for these parameters. Researchers and graduate students working at the interface of telecommunications and operations research will benefit from this book. Due to the practical approach, this book will also serve as a reference tool for scientists and engineers in telecommunication and computer networks who depend upon optimization.
Semidefinite programming has been described as linear programming
for the year 2000. It is an exciting new branch of mathematical
programming, due to important applications in control theory,
combinatorial optimization and other fields. Moreover, the
successful interior point algorithms for linear programming can be
extended to semidefinite programming. |
You may like...
Progress in Industrial Mathematics at…
Peregrina Quintela, Patricia Barral, …
Hardcover
R5,308
Discovery Miles 53 080
Computational Optimization Techniques…
Muhammad Sarfraz, Samsul Ariffin Abdul Karim
Hardcover
R3,099
Discovery Miles 30 990
Fixed-Time Cooperative Control of…
Zongyu Zuo, Qinglong Han, …
Hardcover
R3,106
Discovery Miles 31 060
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang
Hardcover
R2,132
Discovery Miles 21 320
Numerical Methods and Optimization in…
Manfred Gilli, Dietmar Maringer, …
Hardcover
R2,188
Discovery Miles 21 880
|