![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
In the last decades, algorithmic advances as well as hardware and software improvements have provided an excellent environment to create and develop solving methods to hard optimization problems. Modern exact and heuristic techniques are dramatically enhancing our ability to solve significant practical problems. This monograph sets out state-of-the-art methodologies for solving combinatorial optimization problems, illustrating them with two well-known problems. This second edition of the book extends the first one by adding to the 'linear ordering problem' (LOP), included in the first edition, the 'maximum diversity problem' (MDP). In this way, we provide the reader with the background, elements and strategies to tackle a wide range of different combinatorial optimization problems. The exact and heuristic techniques outlined in these pages can be put to use in any number of combinatorial optimization problems. While the authors employ the LOP and the MDP to illustrate cutting-edge optimization technologies, the book is also a tutorial on how to design effective and successful implementations of exact and heuristic procedures alike. This monograph provides the basic principles and fundamental ideas that will enable students and practitioners to create valuable applications based on both exact and heuristic technologies. Specifically, it is aimed at engineers, scientists, operations researchers, and other applications specialists who are looking for the most appropriate and recent optimization tools to solve particular problems. The book provides a broad spectrum of advances in search strategies with a focus on its algorithmic and computational aspects.
Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions. Multi-objective optimization methods facilitate designers, engineers, and researchers to make decisions on appropriate trade-offs between various conflicting goals. A variety of deterministic and stochastic multi-objective optimization methods are developed in this book. Beginning with basic concepts and a review of non-convex single-objective optimization problems; this book moves on to cover multi-objective branch and bound algorithms, worst-case optimal algorithms (for Lipschitz functions and bi-objective problems), statistical models based algorithms, and probabilistic branch and bound approach. Detailed descriptions of new algorithms for non-convex multi-objective optimization, their theoretical substantiation, and examples for practical applications to the cell formation problem in manufacturing engineering, the process design in chemical engineering, and business process management are included to aide researchers and graduate students in mathematics, computer science, engineering, economics, and business management.
This book introduces the advances in synchromodal logistics and provides a framework to classify various optimisation problems in this field. It explores the application of this framework to solve a broad range of problems, such as problems with and without a central decision-maker, problems with and without full information, deterministic problems, problems coping with uncertainty, optimisation of a full network design problem. It covers theoretical constructs, such as discrete optimisation, robust optimisation, optimisation under uncertainty, multi-objective optimisation and agent based equilibrium models. Moreover, practical elaborated use cases are presented to deepen understanding. The book gives both researchers and practitioners a good overview of the field of synchromodal optimisation problems and offers the reader practical methods for modelling and problem-solving.
This book deals with several types of multi-dimensional control problems in the face of data uncertainty for vector cases-multi-dimensional multi-objective control problem with uncertain objective functionals, uncertain constraint functionals, and uncertain objective as well as constraint functionals, uncertain multi-dimensional multi-objective control problem with semi-infinite constraints, uncertain dual multi-dimensional multi-objective variational control problem, and second-order PDE&PDI constrained robust optimization problem. The book provides the solution approaches-an exact l1 penalty function approach, modified objective approach, robust approach-in the simplest way to solve the recent developing optimization problems in the sense of uncertainty.
This book focuses primarily on the nature-inspired approach for designing smart applications. It includes several implementation paradigms such as design and path planning of wireless network, security mechanism and implementation for dynamic as well as static nodes, learning method of cloud computing, data exploration and management, data analysis and optimization, decision taking in conflicting environment, etc. The book fundamentally highlights the recent research advancements in the field of engineering and science.
This volume presents state-of-the-art complementarity applications, algorithms, extensions and theory in the form of eighteen papers. These at the International Conference on Com invited papers were presented plementarity 99 (ICCP99) held in Madison, Wisconsin during June 9-12, 1999 with support from the National Science Foundation under Grant DMS-9970102. Complementarity is becoming more widely used in a variety of appli cation areas. In this volume, there are papers studying the impact of complementarity in such diverse fields as deregulation of electricity mar kets, engineering mechanics, optimal control and asset pricing. Further more, application of complementarity and optimization ideas to related problems in the burgeoning fields of machine learning and data mining are also covered in a series of three articles. In order to effectively process the complementarity problems that arise in such applications, various algorithmic, theoretical and computational extensions are covered in this volume. Nonsmooth analysis has an im portant role to play in this area as can be seen from articles using these tools to develop Newton and path following methods for constrained nonlinear systems and complementarity problems. Convergence issues are covered in the context of active set methods, global algorithms for pseudomonotone variational inequalities, successive convex relaxation and proximal point algorithms. Theoretical contributions to the connectedness of solution sets and constraint qualifications in the growing area of mathematical programs with equilibrium constraints are also presented. A relaxation approach is given for solving such problems. Finally, computational issues related to preprocessing mixed complementarity problems are addressed."
This text provides a framework in which the main objectives of the field of uncertainty quantification (UQ) are defined and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favorite problems to understand their strengths and weaknesses, also making the text suitable for a self-study. Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation and numerous application areas in science and engineering. This text is designed as an introduction to UQ for senior undergraduate and graduate students with a mathematical or statistical background and also for researchers from the mathematical sciences or from applications areas who are interested in the field. T. J. Sullivan was Warwick Zeeman Lecturer at the Mathematics Institute of the University of Warwick, United Kingdom, from 2012 to 2015. Since 2015, he is Junior Professor of Applied Mathematics at the Free University of Berlin, Germany, with specialism in Uncertainty and Risk Quantification.
This first book focuses on uncertain graph and network optimization. It covers three different main contents: uncertain graph, uncertain programming and uncertain network optimization. It also presents applications of uncertain network optimization in a lot of real problems such as transportation problems, dispatching medical supplies problems and location problems. The book is suitable for researchers, engineers, teachers and students in the field of mathematics, information science, computer science, decision science, management science and engineering, artificial intelligence, industrial engineering, economics and operations research.
Written by a leading expert in turnpike phenomenon, this book is devoted to the study of symmetric optimization, variational and optimal control problems in infinite dimensional spaces and turnpike properties of their approximate solutions. The book presents a systematic and comprehensive study of general classes of problems in optimization, calculus of variations, and optimal control with symmetric structures from the viewpoint of the turnpike phenomenon. The author establishes generic existence and well-posedness results for optimization problems and individual (not generic) turnpike results for variational and optimal control problems. Rich in impressive theoretical results, the author presents applications to crystallography and discrete dispersive dynamical systems which have prototypes in economic growth theory. This book will be useful for researchers interested in optimal control, calculus of variations turnpike theory and their applications, such as mathematicians, mathematical economists, and researchers in crystallography, to name just a few.
This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions-Chebyshev, Legendre, Gegenbauer, and Jacobi-are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations. On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems.
This book defines and studies a combinatorial object called the pedigree and develops the theory for optimising a linear function over the convex hull of pedigrees (the Pedigree polytope). A strongly polynomial algorithm implementing the framework given in the book for checking membership in the pedigree polytope is a major contribution. This book challenges the popularly held belief in computer science that a problem included in the NP-complete class may not have a polynomial algorithm to solve. By showing STSP has a polynomial algorithm, this book settles the P vs NP question. This book has illustrative examples, figures, and easily accessible proofs for showing this unexpected result. This book introduces novel constructions and ideas previously not used in the literature. Another interesting feature of this book is it uses basic max-flow and linear multicommodity flow algorithms and concepts in these proofs establishing efficient membership checking for the pedigree polytope. Chapters 3-7 can be adopted to give a course on Efficient Combinatorial Optimization. This book is the culmination of the author's research that started in 1982 through a presentation on a new formulation of STSP at the XIth International Symposium on Mathematical Programming at Bonn.
The primary aim of this book is to present notions of convex analysis which constitute the basic underlying structure of argumentation in economic theory and which are common to optimization problems encountered in many applications. The intended readers are graduate students, and specialists of mathematical programming whose research fields are applied mathematics and economics. The text consists of a systematic development in eight chapters, with guided exercises containing sometimes significant and useful additional results. The book is appropriate as a class text, or for self-study.
In trying to make a satisfactory decision when imprecise and multicriteria situations are involved, a decision maker has to use a fuzzy multicriteria decision making method. "Fuzzy Multi-Criteria Decision Making" (MCDM) presents fuzzy multiattribute and multiobjective decision-making methodologies by distinguished MCDM researchers. In summarizing the concepts and results of the most popular fuzzy multicriteria methods, using numerical examples, this work examines all the fuzzy multicriteria methods recently developed, such as fuzzy AHP, fuzzy TOPSIS, interactive fuzzy multiobjective stochastic linear programming, fuzzy multiobjective dynamic programming, grey fuzzy multiobjective optimization, fuzzy multiobjective geometric programming, and more. Each of the 22 chapters includes practical applications along with new developments/results. This book may be used as a textbook in graduate operations research, industrial engineering, and economics courses. It will also be an excellent resource, providing new suggestions and directions for further research, for computer programmers, mathematicians, and scientists in a variety of disciplines where multicriteria decision making is needed.
This book describes concepts and tools needed for water resources management, including methods for modeling, simulation, optimization, big data analysis, data mining, remote sensing, geographical information system, game theory, conflict resolution, System dynamics, agent-based models, multiobjective, multicriteria, and multiattribute decision making and risk and uncertainty analysis, for better and sustainable management of water resources and consumption, thus mitigating the present and future global water shortage crisis. It presents the applications of these tools through case studies which demonstrate its benefits of proper management of water resources systems. This book acts as a reference for students, professors, industrial practitioners, and stakeholders in the field of water resources and hydrology.
This book presents mathematical models of demand-side management programs, together with operational and control problems for power and renewable energy systems. It reflects the need for optimal operation and control of today's electricity grid at both the supply and demand spectrum of the grid. This need is further compounded by the advent of smart grids, which has led to increased customer/consumer participation in power and renewable energy system operations. The book begins by giving an overview of power and renewable energy systems, demand-side management programs and algebraic modeling languages. The overview includes detailed consideration of appliance scheduling algorithms, price elasticity matrices and demand response incentives. Furthermore, the book presents various power system operational and control mathematical formulations, incorporating demand-side management programs. The mathematical formulations developed are modeled and solved using the Advanced Interactive Multidimensional Modeling System (AIMMS) software, which offers a powerful yet simple algebraic modeling language for solving optimization problems. The book is extremely useful for all power system operators and planners who are concerned with optimal operational procedures for managing today's complex grids, a context in which customers are active participants and can curb/control their demand. The book details how AIMMS can be a useful tool in optimizing power grids and also offers a valuable research aid for students and academics alike.
The COVID-19 pandemic has vividly and dramatically demonstrated the importance of supply chains to the functioning of societies and our economies. The discussion in this timely book explores prominent issues concerning supply chain networks and labor. The readership is aimed to include students, researchers, practitioners, and policy-makers, interested in the wide range of topics presented in these pages. Labor has a particular focus as the driver behind supply chains, whether associated with food products, life-saving medicines and supplies, or high tech products that make innovation possible, just to name a few. The impacts of policy interventions, in the form of wage bounds, and their ramifications, in terms of volume of attracted labor, product prices, product volumes, as well as profits, are explored. Profit-maximizing firms are considered (with relevant associated issues such as waste management in the case of the food sector, for example), but also non-profits, as in blood services, as well as humanitarian organizations engaged in disaster relief. The book is filled with many network figures, graphs, and tables with data, both input and output and includes an appendix that provides the foundations of the underlying mathematical methodologies used. The book offers strong evidence for the need to provide a holistic, system-wide perspective for the modeling, analysis, and solution of supply chain problems with the inclusion of the critical labor resources. A formalism using the prism of supply chain networks, which yields a graphic representation of supply chains, consisting of multiple stakeholders, is constructed. Models that capture the behaviors and interactions of single decision-makers as well as multiple decision-makers engaged in supply chain activities of production, transportation, storage, and distribution, are considered. The models capture many realistic constraints faced by firms today, as they seek to produce and deliver products, while dealing with competition, various constraints on labor, a variety of disruptions, labor shortages, challenges associated with proper wage-determination, plus the computation of optimal investments in labor productivity subject to budget constraints. The book provides prescriptive suggestions in terms of how to ameliorate negative impacts of labor disruptions and demonstrate benefits of appropriate wage determination.
This book presents a modern perspective on the modelling, analysis, and synthesis ideas behind convex-optimisation-based control of nonlinear systems: it embeds them in models with convex structures. Analysis and Synthesis of Nonlinear Control Systems begins with an introduction to the topic and a discussion of the problems to be solved. It then explores modelling via convex structures, including quasi-linear parameter-varying, Takagi-Sugeno models, and linear fractional transformation structures. The authors cover stability analysis, addressing Lyapunov functions and the stability of polynomial models, as well as the performance and robustness of the models. With detailed examples, simulations, and programming code, this book will be useful to instructors, researchers, and graduate students interested in nonlinear control systems.
This book establishes an important mathematical connection between cooperative control problems and network optimization problems. It shows that many cooperative control problems can in fact be understood, under certain passivity assumptions, using a pair of static network optimization problems. Merging notions from passivity theory and network optimization, it describes a novel network optimization approach that can be applied to the synthesis of controllers for diffusively-coupled networks of passive (or passivity-short) dynamical systems. It also introduces a data-based, model-free approach for the synthesis of network controllers for multi-agent systems with passivity-short agents. Further, the book describes a method for monitoring link faults in multi-agent systems using passivity theory and graph connectivity. It reports on some practical case studies describing the effectivity of the developed approaches in vehicle networks. All in all, this book offers an extensive source of information and novel methods in the emerging field of multi-agent cooperative control, paving the way to future developments of autonomous systems for various application domains
This contributed volume presents some of the latest research related to model order reduction of complex dynamical systems with a focus on time-dependent problems. Chapters are written by leading researchers and users of model order reduction techniques and are based on presentations given at the 2019 edition of the workshop series Model Reduction of Complex Dynamical Systems - MODRED, held at the University of Graz in Austria. The topics considered can be divided into five categories: system-theoretic methods, such as balanced truncation, Hankel norm approximation, and reduced-basis methods; data-driven methods, including Loewner matrix and pencil-based approaches, dynamic mode decomposition, and kernel-based methods; surrogate modeling for design and optimization, with special emphasis on control and data assimilation; model reduction methods in applications, such as control and network systems, computational electromagnetics, structural mechanics, and fluid dynamics; and model order reduction software packages and benchmarks. This volume will be an ideal resource for graduate students and researchers in all areas of model reduction, as well as those working in applied mathematics and theoretical informatics.
This book is about algebraic and differential methods, as well as fractional calculus, applied to diagnose and reject faults in nonlinear systems, which are of integer or fractional order. This represents an extension of a very important and widely studied problem in control theory, namely fault diagnosis and rejection (using differential algebraic approaches), to systems presenting fractional dynamics, i.e. systems whose dynamics are represented by derivatives and integrals of non-integer order. The authors offer a thorough overview devoted to fault diagnosis and fault-tolerant control applied to fractional-order and integer-order dynamical systems, and they introduce new methodologies for control and observation described by fractional and integer models, together with successful simulations and real-time applications. The basic concepts and tools of mathematics required to understand the methodologies proposed are all clearly introduced and explained. Consequently, the book is useful as supplementary reading in courses of applied mathematics and nonlinear control theory. This book is meant for engineers, mathematicians, physicists and, in general, to researchers and postgraduate students in diverse areas who have a minimum knowledge of calculus. It also contains advanced topics for researchers and professionals interested in the area of states and faults estimation.
This book presents efficient metaheuristic algorithms for optimal design of structures. Many of these algorithms are developed by the author and his graduate students, consisting of Particle Swarm Optimization, Charged System Search, Magnetic Charged System Search, Field of Forces Optimization, Democratic Particle Swarm Optimization, Dolphin Echolocation Optimization, Colliding Bodies Optimization, Ray Optimization. These are presented together with algorithms which are developed by other authors and have been successfully applied to various optimization problems. These consist of Partical Swarm Optimization, Big Band Big Crunch algorithm, Cuckoo Search Optimization, Imperialist Competitive Algorithm and Chaos Embedded Metaheuristic Algorithm. Finally a multi-objective Optimization is presented to Solve large scale structural problems based on the Charged System Search algorithm, In the second edition seven new chapters are added consisting of Enhance colliding bodies optimization, Global sensitivity analysis, Tug of War Optimization, Water evaporation optimization, Vibrating System Optimization and Cyclical Parthenogenesis Optimization algorithm. In the third edition, five new chapters are included consisting of the recently developed algorithms. These are Shuffled Shepherd Optimization Algorithm, Set Theoretical Shuffled Shepherd Optimization Algorithm, Set Theoretical Teaching-Learning-Based Optimization Algorithm, Thermal Exchange Metaheuristic Optimization Algorithm, and Water Strider Optimization Algorithm and Its Enhancement. The concepts and algorithm presented in this book are not only applicable to optimization of skeletal structure, finite element models, but can equally be utilized for optimal design of other systems such as hydraulic and electrical networks.
A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham's razor: "Entities should not be multiplied without neces sity. " This principle enabled scientists to select the "best" physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage"spoken"whenpresentingideasandresults. The?eldof sparse representations, that recently underwent a Big Bang like expansion, explic itly deals with the Yin Yang interplay between the parsimony of descriptions and the "language" or "dictionary" used in them, and it became an extremely exciting area of investigation. It already yielded a rich crop of mathematically pleasing, deep and beautiful results that quickly translated into a wealth of practical engineering applications. You are holding in your hands the ?rst guide book to Sparseland, and I am sure you'll ?nd in it both familiar and new landscapes to see and admire, as well as ex cellent pointers that will help you ?nd further valuable treasures. Enjoy the journey to Sparseland! Haifa, Israel, December 2009 Alfred M. Bruckstein vii Preface This book was originally written to serve as the material for an advanced one semester (fourteen 2 hour lectures) graduate course for engineering students at the Technion, Israel.
This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering in diverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.
This book provides a systematic description about the development of Isogeometric Topology Optimization (ITO) method using the density, and then addresses the effectiveness and efficiency of the ITO method on several design problems, including multi-material structures, stress-minimization structures, piezoelectric structures and also with the uniform manufacturability, ultra-lightweight architected materials with extreme bulk/shear moduli, auxetic metamaterials and auxetic meta-composites with the NPRs behavior in microstructures. A detailed MATLAB implementation of the ITO method with an in-house code "IgaTop" is also presented.
This book discusses comprehensively the advanced manufacturing processes, including illustrative examples of the processes, mathematical modeling, and the need to optimize associated parameter problems. In addition, it describes in detail the cohort intelligence methodology and its variants along with illustrations, to help readers gain a better understanding of the framework. The theoretical and statistical rigor is validated by comparing the solutions with evolutionary algorithms, simulation annealing, response surface methodology, the firefly algorithm, and experimental work. Lastly, the book critically reviews several socio-inspired optimization methods. |
You may like...
Numerical Methods and Optimization in…
Manfred Gilli, Dietmar Maringer, …
Hardcover
R2,188
Discovery Miles 21 880
Computational Optimization Techniques…
Muhammad Sarfraz, Samsul Ariffin Abdul Karim
Hardcover
R3,099
Discovery Miles 30 990
Design and Implementation of Practical…
Akshay Kumar, Ahmed Abdelhadi, …
Hardcover
R2,663
Discovery Miles 26 630
Topology Optimization Theory for Laminar…
Yongbo Deng, Yihui Wu, …
Hardcover
R4,653
Discovery Miles 46 530
|