![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
Various imperfections in existing market systems prevent the free market from serving as a truly efficient allocation mechanism, but optimization of economic activities provides an effective remedial measure. Cooperative optimization claims that socially optimal and individually rational solutions to decision problems involving strategic action over time exist. To ensure that cooperation will last throughout the agreement period, however, the stringent condition of subgame consistency is required. This textbook presents a study of subgame consistent economic optimization, developing game-theoretic optimization techniques to establish the foundation for an effective policy menu to tackle the suboptimal behavior that the conventional market mechanism fails to resolve.
Stefan VoC and David Woodruff have edited a carefully refereed volume by experts on optimization software class libraries. The book focuses on flexible and powerful collections of computational objects for addressing complex optimization problems. These component class libraries are suitable for use in the increasing number of optimization applications that stand alone or are imbedded in advanced planning, engineering, and bioinformatics applications. Most researchers today use a number of modeling language software packages and a number of software solvers to solve computational problems. This book outlines packaged software class libraries to enable researchers to find cost-effective and efficient methods of getting problems coded into the computer, or into a modeling language package or into optimizing solvers - hence providing software coding solutions to whatever specialized needs a specific problem might require. Optimization Software Class Libraries provides the reader with a rich overview of the variety of components for framing problems. With the growing number of application-specific software systems and advance planning methods for specific classes of problems, class libraries for optimization are increasingly useful, practical, and needed. Benefits of Optimization Software Class Libraries are: Researchers will be able to invest more effort in examining better algorithms, performing experiments, and making use of problem-specific knowledge; The libraries that encapsulate general-purpose algorithms as reusable, high-quality software components are themselves significant contributions to ongoing research; and In addition to the research benefits, the libraries described providesubstantial practical value to organizations that adopt them.
Current and historical research methods in approximation theory are presented in this book beginning with the 1800s and following the evolution of approximation theory via the refinement and extension of classical methods and ending with recent techniques and methodologies. Graduate students, postdocs, and researchers in mathematics, specifically those working in the theory of functions, approximation theory, geometric function theory, and optimization will find new insights as well as a guide to advanced topics. The chapters in this book are grouped into four themes; the first, polynomials (Chapters 1 -8), includes inequalities for polynomials and rational functions, orthogonal polynomials, and location of zeros. The second, inequalities and extremal problems are discussed in Chapters 9 -13. The third, approximation of functions, involves the approximants being polynomials, rational functions, and other types of functions and are covered in Chapters 14 -19. The last theme, quadrature, cubature and applications, comprises the final three chapters and includes an article coauthored by Rahman. This volume serves as a memorial volume to commemorate the distinguished career of Qazi Ibadur Rahman (1934-2013) of the Universite de Montreal. Rahman was considered by his peers as one of the prominent experts in analytic theory of polynomials and entire functions. The novelty of his work lies in his profound abilities and skills in applying techniques from other areas of mathematics, such as optimization theory and variational principles, to obtain final answers to countless open problems.
This contributed volume focuses on various important areas of mathematics in which approximation methods play an essential role. It features cutting-edge research on a wide spectrum of analytic inequalities with emphasis on differential and integral inequalities in the spirit of functional analysis, operator theory, nonlinear analysis, variational calculus, featuring a plethora of applications, making this work a valuable resource. The reader will be exposed to convexity theory, polynomial inequalities, extremal problems, prediction theory, fixed point theory for operators, PDEs, fractional integral inequalities, multidimensional numerical integration, Gauss-Jacobi and Hermite-Hadamard type inequalities, Hilbert-type inequalities, and Ulam's stability of functional equations. Contributions have been written by eminent researchers, providing up-to-date information and several results which may be useful to a wide readership including graduate students and researchers working in mathematics, physics, economics, operational research, and their interconnections.
This successful book provides in its second edition an interactive and illustrative guide from two-dimensional curve fitting to multidimensional clustering and machine learning with neural networks or support vector machines. Along the way topics like mathematical optimization or evolutionary algorithms are touched. All concepts and ideas are outlined in a clear cut manner with graphically depicted plausibility arguments and a little elementary mathematics.The major topics are extensively outlined with exploratory examples and applications. The primary goal is to be as illustrative as possible without hiding problems and pitfalls but to address them. The character of an illustrative cookbook is complemented with specific sections that address more fundamental questions like the relation between machine learning and human intelligence.All topics are completely demonstrated with the computing platform Mathematica and the Computational Intelligence Packages (CIP), a high-level function library developed with Mathematica's programming language on top of Mathematica's algorithms. CIP is open-source and the detailed code used throughout the book is freely accessible.The target readerships are students of (computer) science and engineering as well as scientific practitioners in industry and academia who deserve an illustrative introduction. Readers with programming skills may easily port or customize the provided code. "'From curve fitting to machine learning' is ... a useful book. ... It contains the basic formulas of curve fitting and related subjects and throws in, what is missing in so many books, the code to reproduce the results.All in all this is an interesting and useful book both for novice as well as expert readers. For the novice it is a good introductory book and the expert will appreciate the many examples and working code". Leslie A. Piegl (Review of the first edition, 2012).
Sustainable development within urban and rural areas, transportation systems, logistics, supply chain management, urban health, social services, and architectural design are taken into consideration in the cohesive network models provided in this book. The ideas, methods, and models presented consider city landscapes and quality of life conditions based on mathematical network models and optimization. Interdisciplinary Works from prominent researchers in mathematical modeling, optimization, architecture, engineering, and physics are featured in this volume to promote health and well-being through design. Specific topics include: - Current technology that form the basis of future living in smart cities - Interdisciplinary design and networking of large-scale urban systems - Network communication and route traffic optimization - Carbon dioxide emission reduction - Closed-loop logistics chain management and operation - Modeling the effect urban environments on aging - Health care infrastructure - Urban water system management - Architectural design optimization Graduate students and researchers actively involved in architecture, engineering, building physics, logistics, supply chain management, and mathematical optimization will find the interdisciplinary work presented both informative and inspiring for further research.
Nature-Inspired Optimization Algorithms, a comprehensive work on the most popular optimization algorithms based on nature, starts with an overview of optimization going from the classical to the latest swarm intelligence algorithm. Nature has a rich abundance of flora and fauna that inspired the development of optimization techniques, providing us with simple solutions to complex problems in an effective and adaptive manner. The study of the intelligent survival strategies of animals, birds, and insects in a hostile and ever-changing environment has led to the development of techniques emulating their behavior. This book is a lucid description of fifteen important existing optimization algorithms based on swarm intelligence and superior in performance. It is a valuable resource for engineers, researchers, faculty, and students who are devising optimum solutions to any type of problem ranging from computer science to economics and covering diverse areas that require maximizing output and minimizing resources. This is the crux of all optimization algorithms. Features: Detailed description of the algorithms along with pseudocode and flowchart Easy translation to program code that is also readily available in Mathworks website for some of the algorithms Simple examples demonstrating the optimization strategies are provided to enhance understanding Standard applications and benchmark datasets for testing and validating the algorithms are included This book is a reference for undergraduate and post-graduate students. It will be useful to faculty members teaching optimization. It is also a comprehensive guide for researchers who are looking for optimizing resources in attaining the best solution to a problem. The nature-inspired optimization algorithms are unconventional, and this makes them more efficient than their traditional counterparts.
Optimization from Human Genes to Cutting Edge Technologies The challenges faced by industry today are so complex that they can only be solved through the help and participation of optimization ex perts. For example, many industries in e-commerce, finance, medicine, and engineering, face several computational challenges due to the mas sive data sets that arise in their applications. Some of the challenges include, extended memory algorithms and data structures, new program ming environments, software systems, cryptographic protocols, storage devices, data compression, mathematical and statistical methods for knowledge mining, and information visualization. With advances in computer and information systems technologies, and many interdisci plinary efforts, many of the "data avalanche challenges" are beginning to be addressed. Optimization is the most crucial component in these efforts. Nowadays, the main task of optimization is to investigate the cutting edge frontiers of these technologies and systems and find the best solutions for their realization. Optimization principles are evident in nature (the perfect optimizer) and appeared early in human history. Did you ever watch how a spider catches a fly or a mosquito? Usually a spider hides at the edge of its net. When a fly or a mosquito hits the net the spider will pick up each line in the net to choose the tense line? Some biologists explain that the line gives the shortest path from the spider to its prey."
The book presents new results and applications of the topological derivative method in control theory, topology optimization and inverse problems. It also introduces the theory in singularly perturbed geometrical domains using selected examples. Recognized as a robust numerical technique in engineering applications, such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena, the topological derivative method is based on the asymptotic approximations of solutions to elliptic boundary value problems combined with mathematical programming tools. The book presents the first order topology design algorithm and its applications in topology optimization, and introduces the second order Newton-type reconstruction algorithm based on higher order topological derivatives for solving inverse reconstruction problems. It is intended for researchers and students in applied mathematics and computational mechanics interested in the mathematical aspects of the topological derivative method as well as its applications in computational mechanics.
This book introduces several mathematical models in assembly line balancing based on stochastic programming and develops exact and heuristic methods to solve them. An assembly line system is a manufacturing process in which parts are added in sequence from workstation to workstation until the final assembly is produced. In an assembly line balancing problem, tasks belonging to different product models are allocated to workstations according to their processing times and precedence relationships among tasks. It incorporates two features, uncertain task times, and demand volatility, separately and simultaneously, into the conventional assembly line balancing model. A real-life case study related to the mask production during the COVID-19 pandemic is presented to illustrate the application of the proposed framework and methodology. The book is intended for graduate students who are interested in combinatorial optimizations in manufacturing with uncertain input.
This open access book demonstrates all the steps required to design heuristic algorithms for difficult optimization. The classic problem of the travelling salesman is used as a common thread to illustrate all the techniques discussed. This problem is ideal for introducing readers to the subject because it is very intuitive and its solutions can be graphically represented. The book features a wealth of illustrations that allow the concepts to be understood at a glance. The book approaches the main metaheuristics from a new angle, deconstructing them into a few key concepts presented in separate chapters: construction, improvement, decomposition, randomization and learning methods. Each metaheuristic can then be presented in simplified form as a combination of these concepts. This approach avoids giving the impression that metaheuristics is a non-formal discipline, a kind of cloud sculpture. Moreover, it provides concrete applications of the travelling salesman problem, which illustrate in just a few lines of code how to design a new heuristic and remove all ambiguities left by a general framework. Two chapters reviewing the basics of combinatorial optimization and complexity theory make the book self-contained. As such, even readers with a very limited background in the field will be able to follow all the content.
This book provides a Management Science approach to quality management in food production. Aspects of food quality, product conformance and reliability/food safety are examined, starting with wheat and ending with its value chain transformation into bread. Protein qualities that influence glycemic index levels in bread are used to compare the value chains of France and the US. With Kaizen models the book shows how changes in these characteristics are the result of management decisions made by the wheat growers in response to government policy and industry strategy. Lately, it provides step-by-step instructions on how to apply kaizen methodology and Deming's work on quality improvement to make the HACCPs (Hazard Analysis and Critical Control Points) in food safety systems more robust.
This book will serve as a reference, presenting state-of-the-art research on theoretical aspects of optimal sensor coverage problems. Readers will find it a useful tool for furthering developments on theory and applications of optimal coverage; much of the content can serve as material for advanced topics courses at the graduate level. The book is well versed with the hottest research topics such as Lifetime of Coverage, Weighted Sensor Cover, k-Coverage, Heterogeneous Sensors, Barrier, Sweep and Partial Coverage, Mobile Sensors, Camera Sensors and Energy-Harvesting Sensors, and more. Topics are introduced in a natural order from simple covers to connected covers, to the lifetime problem. Later, the book begins revisiting earlier problems ranging from the introduction of weights to coverage by k sensors and partial coverage, and from sensor heterogeneity to novel problems such as the barrier coverage problem. The book ends with coverage of mobile sensors, camera sensors, energy-harvesting sensors, underwater sensors, and crowdsensing.
The book begins with an introduction to software reliability, models and techniques. The book is an informative book covering the strategies needed to assess software failure behaviour and its quality, as well as the application of optimization tools for major managerial decisions related to the software development process. It features a broad range of topics including software reliability assessment and apportionment, optimal allocation and selection decisions and upgradations problems. It moves through a variety of problems related to the evolving field of optimization of software reliability engineering, including software release time, resource allocating, budget planning and warranty models, which are each explored in depth in dedicated chapters. This book provides a comprehensive insight into present-day practices in software reliability engineering, making it relevant to students, researchers, academics and practising consultants and engineers.
The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas. The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories. All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods. The text is divided into three parts: - Part I: A brief introduction to (Schwartz) distribution theory. Elements from the theories of ultra distributions and (Fourier) hyperfunctions are given in addition to some deeper results for Schwartz distributions, thus providing a rather comprehensive introduction to the theory of generalized functions. Basic properties and methods for distributions are developed with applications to constant coefficient ODEs and PDEs. The relation between distributions and holomorphic functions is considered, as well as basic properties of Sobolev spaces. - Part II: Fundamental facts about Hilbert spaces. The basic theory of linear (bounded and unbounded) operators in Hilbert spaces and special classes of linear operators - compact, Hilbert-Schmidt, trace class, and Schroedinger operators, as needed in quantum physics and quantum information theory - are explored. This section also contains a detailed spectral analysis of all major classes of linear operators, including completeness of generalized eigenfunctions, as well as of (completely) positive mappings, in particular quantum operations. - Part III: Direct methods of the calculus of variations and their applications to boundary- and eigenvalue-problems for linear and nonlinear partial differential operators. The authors conclude with a discussion of the Hohenberg-Kohn variational principle. The appendices contain proofs of more general and deeper results, including completions, basic facts about metrizable Hausdorff locally convex topological vector spaces, Baire's fundamental results and their main consequences, and bilinear functionals. Mathematical Methods in Physics is aimed at a broad community of graduate students in mathematics, mathematical physics, quantum information theory, physics and engineering, as well as researchers in these disciplines. Expanded content and relevant updates will make this new edition a valuable resource for those working in these disciplines.
Today, the optimization of production planning processes by means of IT and quantitative methods is a de-facto standard in the energy industry. Franch et al. inChapter1andIkenouyeinChapter2giveanintroduction, overview, and reasonsforthis. Furthermore, theenergyproblemnowisnotonlyachallenging one but also one of the most important issues in the world from the political and economical points of view. In every country, the government is faced with the problem of how to adopt the system of 'Cap and Trade. ' Especially energy consuming industries, such as steel, power, oil and chemicals, are seriously confronted with this problem. VIII Preface This is also the reason why the German Operations Research Society (GOR) and one of its working groups, held a symposium with the title "Stochastic Optimization in the Energy Industry. " During the 78th meeting of the GOR working group "Praxis der Mathematischen Optimierung/Real World Optimization" in Aachen at Procom GmbH on April 21/22, 2007, the speakers with an application background explained their requirements for stochasticoptimizationsolutionsbasedonpracticalexperiences. Thespeakers from the research side and the software system suppliers examined di?erent aspects of the whole subject - from the integration of wind energy, the chain of errors in nuclear power plants and the scheduling of hydroelectric power stations, and the risk assessment in trading activities to the various software systems which support stochastic optimization methods. The symposium o?ered an interesting overview which re?ected the - quirements, possibilities and restrictions of "Stochastic Optimization in the Energy Industry.
This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will be useful to researchers and graduate students in the fields of optimization and variational analysis.
Designs in nanoelectronics often lead to challenging simulation problems and include strong feedback couplings. Industry demands provisions for variability in order to guarantee quality and yield. It also requires the incorporation of higher abstraction levels to allow for system simulation in order to shorten the design cycles, while at the same time preserving accuracy. The methods developed here promote a methodology for circuit-and-system-level modelling and simulation based on best practice rules, which are used to deal with coupled electromagnetic field-circuit-heat problems, as well as coupled electro-thermal-stress problems that emerge in nanoelectronic designs. This book covers: (1) advanced monolithic/multirate/co-simulation techniques, which are combined with envelope/wavelet approaches to create efficient and robust simulation techniques for strongly coupled systems that exploit the different dynamics of sub-systems within multiphysics problems, and which allow designers to predict reliability and ageing; (2) new generalized techniques in Uncertainty Quantification (UQ) for coupled problems to include a variability capability such that robust design and optimization, worst case analysis, and yield estimation with tiny failure probabilities are possible (including large deviations like 6-sigma); (3) enhanced sparse, parametric Model Order Reduction techniques with a posteriori error estimation for coupled problems and for UQ to reduce the complexity of the sub-systems while ensuring that the operational and coupling parameters can still be varied and that the reduced models offer higher abstraction levels that can be efficiently simulated. All the new algorithms produced were implemented, transferred and tested by the EDA vendor MAGWEL. Validation was conducted on industrial designs provided by end-users from the semiconductor industry, who shared their feedback, contributed to the measurements, and supplied both material data and process data. In closing, a thorough comparison to measurements on real devices was made in order to demonstrate the algorithms' industrial applicability.
DYNAMIC OPTIMIZATION AND DIFFERENTIAL GAMES has been written to address the increasing number of Operations Research and Management Science problems (that is, applications) that involve the explicit consideration of time and of gaming among multiple agents. It is a book that will be used both as a textbook and as a reference and guide to engineers, operation researchers, applied mathematicians and social scientists whose work involves the theoretical aspects of dynamic optimization and differential games. Included throughout the text are detailed explanations of several original dynamic and game-theoretic mathematical models, which are of particular relevance in todaya (TM)s technologically-driven-global economy: revenue management, supply chain management, electric power systems, urban freight systems, dynamic congestion pricing, dynamic traffic assignment, electronic commerce and the Internet. In addition, there will be some more traditional applications with useful pedagogical content included in Chapter 1. The book combines an emphasis on deterministic models and methods along with an introduction to stochastic optimal control and stochastic differential games. And most important, the book covers both theory and applications. It develops the key results of deterministic, continuous time, optimal control theory from both the classical calculus of variations perspectives and the more modern approach of infinite dimensional mathematical programming. Infinite dimensional mathematical programming provides greater utility for solving continuous-time-differential-game problems.
This book presents open optimization problems in graph theory and networks. Each chapter reflects developments in theory and applications based on Gregory Gutin's fundamental contributions to advanced methods and techniques in combinatorial optimization. Researchers, students, and engineers in computer science, big data, applied mathematics, operations research, algorithm design, artificial intelligence, software engineering, data analysis, industrial and systems engineering will benefit from the state-of-the-art results presented in modern graph theory and its applications to the design of efficient algorithms for optimization problems. Topics covered in this work include: * Algorithmic aspects of problems with disjoint cycles in graphs * Graphs where maximal cliques and stable sets intersect * The maximum independent set problem with special classes * A general technique for heuristic algorithms for optimization problems * The network design problem with cut constraints * Algorithms for computing the frustration index of a signed graph * A heuristic approach for studying the patrol problem on a graph * Minimum possible sum and product of the proper connection number * Structural and algorithmic results on branchings in digraphs * Improved upper bounds for Korkel--Ghosh benchmark SPLP instances
Like norms, translation invariant functions are a natural and powerful tool for the separation of sets and scalarization. This book provides an extensive foundation for their application. It presents in a unified way new results as well as results which are scattered throughout the literature. The functions are defined on linear spaces and can be applied to nonconvex problems. Fundamental theorems for the function class are proved, with implications for arbitrary extended real-valued functions. The scope of applications is illustrated by chapters related to vector optimization, set-valued optimization, and optimization under uncertainty, by fundamental statements in nonlinear functional analysis and by examples from mathematical finance as well as from consumer and production theory. The book is written for students and researchers in mathematics and mathematical economics. Engineers and researchers from other disciplines can benefit from the applications, for example from scalarization methods for multiobjective optimization and optimal control problems.
Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today's state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.
Global optimization aims at solving the most general problems of deterministic mathematical programming: to find the global optimum of a nonlinear, nonconvex, multivariate function of continuous and/or integer variables subject to constraints which may be themselves nonlinear and nonconvex. In addition, once the solutions are found, proof of its optimality is also expected from this methodology. Therefore, with these difficulties in mind, global optimization is becoming an increasingly powerful and important methodology. Essays and Surveys in Global Optimization is the most recent examination of its mathematical capability, power, and wide ranging solutions to many fields in the applied sciences.
This book presents the application of some AI related optimization techniques in the operation and control of electric power systems. With practical applications and examples the use of functional analysis, simulated annealing, Tabu-search, Genetic algorithms and fuzzy systems for the optimization of power systems is discussed in detail. Preliminary mathematical concepts are presented before moving to more advanced material. Researchers and graduate students will benefit from this book. Engineers working in utility companies, operations and control, and resource management will also find this book useful. |
You may like...
Computational Intelligence in…
Kaushik Kumar, Ganesh M. Kakandikar, …
Paperback
R3,965
Discovery Miles 39 650
Mycorrhiza - Function, Diversity, State…
Ajit Varma, Ramprasad, …
Hardcover
R6,425
Discovery Miles 64 250
Use of Microbes for the Alleviation of…
Mohammad Miransari
Hardcover
Microbiorobotics - Biologically Inspired…
Minjun Kim, Agung Julius, …
Hardcover
R3,214
Discovery Miles 32 140
Forensic Medicine of the Lower Extremity
Jeremy Rich, Dorothy E. Dean, …
Hardcover
R5,943
Discovery Miles 59 430
Digital Enterprise Challenges…
George L. Kovacs, Peter Bertok, …
Hardcover
R5,451
Discovery Miles 54 510
|