![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization > General
"Addresses the key topic in combinatorial synthesis--how to optimize the quality of a combinatorial library--by determining the usefulness of synthesized compunds, the reliability of biological assay results, and analyzing acadmic and industrial applications, real-world examples, and case studies of successful and unsuccessful technologies."
This book is about algebraic and differential methods, as well as fractional calculus, applied to diagnose and reject faults in nonlinear systems, which are of integer or fractional order. This represents an extension of a very important and widely studied problem in control theory, namely fault diagnosis and rejection (using differential algebraic approaches), to systems presenting fractional dynamics, i.e. systems whose dynamics are represented by derivatives and integrals of non-integer order. The authors offer a thorough overview devoted to fault diagnosis and fault-tolerant control applied to fractional-order and integer-order dynamical systems, and they introduce new methodologies for control and observation described by fractional and integer models, together with successful simulations and real-time applications. The basic concepts and tools of mathematics required to understand the methodologies proposed are all clearly introduced and explained. Consequently, the book is useful as supplementary reading in courses of applied mathematics and nonlinear control theory. This book is meant for engineers, mathematicians, physicists and, in general, to researchers and postgraduate students in diverse areas who have a minimum knowledge of calculus. It also contains advanced topics for researchers and professionals interested in the area of states and faults estimation.
This book systematically discusses nonlinear interval optimization design theory and methods. Firstly, adopting a mathematical programming theory perspective, it develops an innovative mathematical transformation model to deal with general nonlinear interval uncertain optimization problems, which is able to equivalently convert complex interval uncertain optimization problems to simple deterministic optimization problems. This model is then used as the basis for various interval uncertain optimization algorithms for engineering applications, which address the low efficiency caused by double-layer nested optimization. Further, the book extends the nonlinear interval optimization theory to design problems associated with multiple optimization objectives, multiple disciplines, and parameter dependence, and establishes the corresponding interval optimization models and solution algorithms. Lastly, it uses the proposed interval uncertain optimization models and methods to deal with practical problems in mechanical engineering and related fields, demonstrating the effectiveness of the models and methods.
This book includes selected papers presented at the Indo-French Seminar on Optimization, Variational Analysis and Applications (IFSOVAA-2020), held at the Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi, India, from 2-4 February 2020. The book discusses current optimization problems and their solutions by using the powerful tool of variational analysis. Topics covered in this volume include set optimization, multiobjective optimization, mathematical programs with complementary, equilibrium, vanishing and switching constraints, copositive optimization, interval-valued optimization, sequential quadratic programming, bound-constrained optimization, variational inequalities, and more. Several applications in different branches of applied mathematics, engineering, economics, finance, and medical sciences have been included. Each chapter not only provides a detailed survey of the topic but also builds systematic theories and suitable algorithms to deduce the most recent findings in literature. This volume appeals to graduate students as well as researchers and practitioners in pure and applied mathematics and related fields that make use of variational analysis in solving optimization problems.
This contributed volume presents some of the latest research related to model order reduction of complex dynamical systems with a focus on time-dependent problems. Chapters are written by leading researchers and users of model order reduction techniques and are based on presentations given at the 2019 edition of the workshop series Model Reduction of Complex Dynamical Systems - MODRED, held at the University of Graz in Austria. The topics considered can be divided into five categories: system-theoretic methods, such as balanced truncation, Hankel norm approximation, and reduced-basis methods; data-driven methods, including Loewner matrix and pencil-based approaches, dynamic mode decomposition, and kernel-based methods; surrogate modeling for design and optimization, with special emphasis on control and data assimilation; model reduction methods in applications, such as control and network systems, computational electromagnetics, structural mechanics, and fluid dynamics; and model order reduction software packages and benchmarks. This volume will be an ideal resource for graduate students and researchers in all areas of model reduction, as well as those working in applied mathematics and theoretical informatics.
Many decision problems in Operations Research are defined on temporal networks, that is, workflows of time-consuming tasks whose processing order is constrained by precedence relations. For example, temporal networks are used to model projects, computer applications, digital circuits and production processes. Optimization problems arise in temporal networks when a decision maker wishes to determine a temporal arrangement of the tasks and/or a resource assignment that optimizes some network characteristic (e.g. the time required to complete all tasks). The parameters of these optimization problems (e.g. the task durations) are typically unknown at the time the decision problem arises. This monograph investigates solution techniques for optimization problems in temporal networks that explicitly account for this parameter uncertainty. We study several formulations, each of which requires different information about the uncertain problem parameters.
Handbook of Optimization in Medicine is devoted to examining the dramatic increase in the application of effective optimization techniques to the delivery of health care. The articles, written by experts, focus on models and algorithms that have led to more efficient and sophisticated treatments of patients. Topics covered include: optimization in medical imaging, classification and data mining with medical applications, treatment of epilepsy and other brain disorders, treatment of head-and-neck, prostate, and other cancers using conventional conformal and intensity-modulated radiation therapy as well as proton therapy, treatment selection for breast cancer based on new classification schemes, optimization for the genome project, optimal timing of organ transplants.
This book presents the best papers from the 2nd International Conference on Mathematical Research for Blockchain Economy (MARBLE) 2020, held in Vilamoura, Portugal. While most blockchain conferences and forums are dedicated to business applications, product development or Initial Coin Offering (ICO) launches, this conference focused on the mathematics behind blockchain to bridge the gap between practice and theory. Blockchain Technology has been considered as the most fundamental and revolutionising invention since the Internet. Every year, thousands of blockchain projects are launched and circulated in the market, and there is a tremendous wealth of blockchain applications, from finance to healthcare, education, media, logistics and more. However, due to theoretical and technical barriers, most of these applications are impractical for use in a real-world business context. The papers in this book reveal the challenges and limitations, such as scalability, latency, privacy and security, and showcase solutions and developments to overcome them.
This book presents simple design paradigms related to lightweight design, that are derived from an in-depth and theoretically sound analysis based on Pareto theory. It uses numerous examples, including torsion and inflated tubes, to fully explain the theories discussed. Lightweight Construction Principles begins by defining terms in relation to engineering design and optimal design of complex mechanical systems. It then discusses the analytical derivation of the Pareto-optimal set, before applying analytical formulae to optimal design of bent beams. The book moves through numerous case studies of different beam and tube construction including beams subject to bending, thin walled tubes under torsion and truss structures. This book will be of interest to researchers and graduate students in the field of structural optimisation and multi-objective optimization, as well as to practitioners such as design engineers.
Matrix Analysis and Computations introduces the basics of matrix analysis and presents representative methods and their corresponding theories in matrix computations. In this textbook, readers will find: The matrix theory necessary for direct and iterative methods for solving systems of linear equations. Systematic methods and rigorous theory on matrix splitting iteration methods and Krylov subspace iteration methods. Current results on preconditioning and iterative methods for solving standard and generalized saddle-point linear systems. Exercises at the end of each chapter for applying learned methods. This book is intended for graduate students, researchers, and engineers interested in matrix analysis and matrix computations. It is appropriate for the following courses: Advanced Numerical Analysis, Special Topics on Numerical Analysis, Topics on Data Science, Topics on Numerical Optimization, and Topics on Approximation Theory.
This book investigates Reliability-based Multidisciplinary Design Optimization (RBMDO) theory and its application in the design of deep manned submersibles (DMSs). Multidisciplinary Design Optimization (MDO) is an effective design method for large engineering systems like aircraft, warships, and satellites, which require designers and engineers from various disciplines to cooperate with each other. MDO can be used to handle the conflicts that arise between these disciplines, and focuses on the optimal design of the system as a whole. However, it can also push designs to the brink of failure. In order to keep the system balanced, Reliability-based Design (RBD) must be incorporated into MDO. Consequently, new algorithms and methods have to be developed for RBMDO theory. This book provides an essential overview of MDO, RBD, and RBMDO and subsequently introduces key algorithms and methods by means of case analyses. In closing, it introduces readers to the design of DMSs and applies RBMDO methods to the design of the manned hull and the general concept design. The book is intended for all students and researchers who are interested in system design theory, and for engineers working on large, complex engineering systems.
This book addresses the principles and applications of metaheuristic approaches in engineering and related fields. The first part covers metaheuristics tools and techniques such as ant colony optimization and Tabu search, and their applications to several classes of optimization problems. In turn, the book's second part focuses on a wide variety of metaheuristics applications in engineering and/or the applied sciences, e.g. in smart grids and renewable energy. In addition, the simulation codes for the problems discussed are included in an appendix for ready reference. Intended for researchers aspiring to learn and apply metaheuristic techniques, and gathering contributions by prominent experts in the field, the book offers readers an essential introduction to metaheuristics, its theoretical aspects and applications.
Proportional Optimization and Fairness is a long-needed attempt to reconcile optimization with apportionment in just-in-time (JIT) sequences and find the common ground in solving problems ranging from sequencing mixed-model just-in-time assembly lines through just-in-time batch production, balancing workloads in event graphs to bandwidth allocation internet gateways and resource allocation in computer operating systems. The book argues that apportionment theory and optimization based on deviation functions provide natural benchmarks for a process, and then looks at the recent research and developments in the field. Individual chapters look at the theory of apportionment and just-in-time sequences; minimization of just-in-time sequence deviation; optimality of cyclic sequences and the oneness; bottleneck minimization; competition-free instances, Fraenkel s Conjecture, and optimal admission sequences; response time variability; applications to the Liu-Layland Problem and pinwheel scheduling; temporal capacity constraints and supply chain balancing; fair queuing and stride scheduling; and smoothing and batching.
Optimal Control and Optimization of Stochastic Supply Chain Systems examines its subject the context of the presence of a variety of uncertainties. Numerous examples with intuitive illustrations and tables are provided, to demonstrate the structural characteristics of the optimal control policies in various stochastic supply chains and to show how to make use of these characteristics to construct easy-to-operate sub-optimal policies. In Part I, a general introduction to stochastic supply chain systems is provided. Analytical models for various stochastic supply chain systems are formulated and analysed in Part II. In Part III the structural knowledge of the optimal control policies obtained in Part II is utilized to construct easy-to-operate sub-optimal control policies for various stochastic supply chain systems accordingly. Finally, Part IV discusses the optimisation of threshold-type control policies and their robustness. A key feature of the book is its tying together of the complex analytical models produced by the requirements of operational practice, and the simple solutions needed for implementation. The analytical models and theoretical analysis propounded in this monograph will be of benefit to academic researchers and graduate students looking at logistics and supply chain management from standpoints in operations research or industrial, manufacturing, or control engineering. The practical tools and solutions and the qualitative insights into the ideas underlying functional supply chain systems will be of similar use to readers from more industrially-based backgrounds.
This English version of Ruslan L. Stratonovich's Theory of Information (1975) builds on theory and provides methods, techniques, and concepts toward utilizing critical applications. Unifying theories of information, optimization, and statistical physics, the value of information theory has gained recognition in data science, machine learning, and artificial intelligence. With the emergence of a data-driven economy, progress in machine learning, artificial intelligence algorithms, and increased computational resources, the need for comprehending information is essential. This book is even more relevant today than when it was first published in 1975. It extends the classic work of R.L. Stratonovich, one of the original developers of the symmetrized version of stochastic calculus and filtering theory, to name just two topics. Each chapter begins with basic, fundamental ideas, supported by clear examples; the material then advances to great detail and depth. The reader is not required to be familiar with the more difficult and specific material. Rather, the treasure trove of examples of stochastic processes and problems makes this book accessible to a wide readership of researchers, postgraduates, and undergraduate students in mathematics, engineering, physics and computer science who are specializing in information theory, data analysis, or machine learning.
This book examines the mismatch between discrete programs, which lie at the center of modern applied mathematics, and the continuous space phenomena they simulate. The author considers whether we can imagine continuous spaces of programs, and asks what the structure of such spaces would be and how they would be constituted. He proposes a functional analysis of program spaces focused through the lens of iterative optimization. The author begins with the observation that optimization methods such as Genetic Algorithms, Evolution Strategies, and Particle Swarm Optimization can be analyzed as Estimation of Distributions Algorithms (EDAs) in that they can be formulated as conditional probability distributions. The probabilities themselves are mathematical objects that can be compared and operated on, and thus many methods in Evolutionary Computation can be placed in a shared vector space and analyzed using techniques of functional analysis. The core ideas of this book expand from that concept, eventually incorporating all iterative stochastic search methods, including gradient-based methods. Inspired by work on Randomized Search Heuristics, the author covers all iterative optimization methods and not just evolutionary methods. The No Free Lunch Theorem is viewed as a useful introduction to the broader field of analysis that comes from developing a shared mathematical space for optimization algorithms. The author brings in intuitions from several branches of mathematics such as topology, probability theory, and stochastic processes and provides substantial background material to make the work as self-contained as possible. The book will be valuable for researchers in the areas of global optimization, machine learning, evolutionary theory, and control theory.
This book offers a valuable reference guide for researchers in distributed optimization and for senior undergraduate and graduate students alike. Focusing on the natures and functions of agents, communication networks and algorithms in the context of distributed optimization for networked control systems, this book introduces readers to the background of distributed optimization; recent developments in distributed algorithms for various types of underlying communication networks; the implementation of computation-efficient and communication-efficient strategies in the execution of distributed algorithms; and the frameworks of convergence analysis and performance evaluation. On this basis, the book then thoroughly studies 1) distributed constrained optimization and the random sleep scheme, from an agent perspective; 2) asynchronous broadcast-based algorithms, event-triggered communication, quantized communication, unbalanced directed networks, and time-varying networks, from a communication network perspective; and 3) accelerated algorithms and stochastic gradient algorithms, from an algorithm perspective. Finally, the applications of distributed optimization in large-scale statistical learning, wireless sensor networks, and for optimal energy management in smart grids are discussed.
This volume contains select papers presented during the 2nd National Conference on Multidisciplinary Analysis and Optimization. It discusses new developments at the core of optimization methods and its application in multiple applications. The papers showcase fundamental problems and applications which include domains such as aerospace, automotive and industrial sectors. The variety of topics and diversity of insights presented in the general field of optimization and its use in design for different applications will be of interest to researchers in academia or industry.
The aim of this book is to furnish the reader with a rigorous and detailed exposition of the concept of control parametrization and time scaling transformation. It presents computational solution techniques for a special class of constrained optimal control problems as well as applications to some practical examples. The book may be considered an extension of the 1991 monograph A Unified Computational Approach Optimal Control Problems, by K.L. Teo, C.J. Goh, and K.H. Wong. This publication discusses the development of new theory and computational methods for solving various optimal control problems numerically and in a unified fashion. To keep the book accessible and uniform, it includes those results developed by the authors, their students, and their past and present collaborators. A brief review of methods that are not covered in this exposition, is also included. Knowledge gained from this book may inspire advancement of new techniques to solve complex problems that arise in the future. This book is intended as reference for researchers in mathematics, engineering, and other sciences, graduate students and practitioners who apply optimal control methods in their work. It may be appropriate reading material for a graduate level seminar or as a text for a course in optimal control.
This book offers a timely review of cutting-edge applications of computational intelligence to business management and financial analysis. It covers a wide range of intelligent and optimization techniques, reporting in detail on their application to real-world problems relating to portfolio management and demand forecasting, decision making, knowledge acquisition, and supply chain scheduling and management.
This book presents the latest research in the fields of reliability theory and its applications, providing a comprehensive overview of reliability engineering and discussing various tools, techniques, strategies and methods within these areas. Reliability analysis is one of the most multidimensional topics in the field of systems reliability engineering, and while its rapid development creates opportunities for industrialists and academics, it is also means that it is hard to keep up to date with the research taking place. By gathering findings from institutions around the globe, the book offers insights into the international developments in the field. As well as discussing the current areas of research, it also identifies knowledge gaps in reliability theory and its applications and highlights fruitful avenues for future research. Covering topics from life cycle sustainability to performance analysis of cloud computing, this book is ideal for upper undergraduate and postgraduate researchers studying reliability engineering.
This edited book addresses the challenges in managing the operations and supply chain of organizations in the era of internet of things and Industry 4.0. It presents cutting edge research on real world operations related problems, in-depth analyses, and relevant managerial implications. Wide variety of solution approaches such as quantitative, quantitative, and simulations are presented in the context of managing the operations and supply chains. Consisting of selected papers from the XXIII Annual International Conference of Society of Operations Management, this volume is part of a two volume series with the other book consisting of chapters on quantitative decision making. This edited book covers various quantitative models on operations and supply chain management such as inventory optimization, machine learning-operations research integrated model for healthcare systems, game-theoretic analysis of review strategies in truthful information sharing, design of contracts in supply chains, supply chain optimization, inventory routing, and shop floor scheduling. In addition to the quantitative models, several innovative heuristics are proposed for different problems. This book explores qualitative models on improving the performance of small and medium enterprises and petroleum industries and a simulation model for staff allocation in the information technology industry. Finally, this book provides review articles on vaccine supply chains and behavioral operations management. The book throws light on the emerging trends in the use of analytics, optimization, and simulation tools and empirical analysis to improve the performance of operations and supply chains of organizations. It will serve as an essential resource for practitioners, students, faculty members and scholars in operations management and related areas to gain knowledge and pursue high quality research on developments in areas such as managing the resource management and the solution methodology---innovative tools employed in addressing the real world problems and the different optimization techniques.
This book presents the stream-tube method (STM), a method offering computational means of dealing with the two- and three-dimensional properties of numerous incompressible materials in static and dynamic conditions. The authors show that the kinematics and stresses associated with the flow and deformation in such materials can be treated by breaking the system down into simple computational sub-domains in which streamlines are straight and parallel and using one or two mapping functions in steady-state and non-steady-state conditions. The STM is considered for various problems in non-Newtonian fluid mechanics with different geometries. The book makes use of examples and applications to illustrate the use of the STM. It explores the possibilities of computation on simple mapped rectangular domains and three-dimensional parallel-piped domains under different conditions. Complex materials with memory are considered simply without particle tracking problems. Readers, including researchers, engineers and graduate students, with a foundational knowledge of calculus, linear algebra, differential equations and fluid mechanics will benefit most greatly from this book.
This monograph collects cutting-edge results and techniques for solving nonlinear partial differential equations using critical points. Including many of the author's own contributions, a range of proofs are conveniently collected here, Because the material is approached with rigor, this book will serve as an invaluable resource for exploring recent developments in this active area of research, as well as the numerous ways in which critical point theory can be applied. Different methods for finding critical points are presented in the first six chapters. The specific situations in which these methods are applicable is explained in detail. Focus then shifts toward the book's main subject: applications to problems in mathematics and physics. These include topics such as Schroedinger equations, Hamiltonian systems, elliptic systems, nonlinear wave equations, nonlinear optics, semilinear PDEs, boundary value problems, and equations with multiple solutions. Readers will find this collection of applications convenient and thorough, with detailed proofs appearing throughout. Critical Point Theory will be ideal for graduate students and researchers interested in solving differential equations, and for those studying variational methods. An understanding of fundamental mathematical analysis is assumed. In particular, the basic properties of Hilbert and Banach spaces are used.
This is a comprehensive study of various time-dependent scheduling problems in single-, parallel- and dedicated-machine environments. In addition to complexity issues and exact or heuristic algorithms which are typically presented in scheduling books, the author also includes more advanced topics such as matrix methods in time-dependent scheduling, time-dependent scheduling with two criteria and time-dependent two-agent scheduling. The reader should be familiar with the basic notions of calculus, discrete mathematics and combinatorial optimization theory, while the book offers introductory material on theory of algorithms, NP-complete problems, and the basics of scheduling theory. The author includes numerous examples, figures and tables, he presents different classes of algorithms using pseudocode, he completes all chapters with extensive bibliographies, and he closes the book with comprehensive symbol and subject indexes. The previous edition of the book focused on computational complexity of time-dependent scheduling problems. In this edition, the author concentrates on models of time-dependent job processing times and algorithms for solving time-dependent scheduling problems. The book is suitable for researchers working on scheduling, problem complexity, optimization, heuristics and local search algorithms. |
![]() ![]() You may like...
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang
Hardcover
R2,308
Discovery Miles 23 080
Computational Optimization Techniques…
Muhammad Sarfraz, Samsul Ariffin Abdul Karim
Hardcover
R3,358
Discovery Miles 33 580
Recent Advances in Model Predictive…
Timm Faulwasser, Matthias A. Muller, …
Hardcover
R3,384
Discovery Miles 33 840
|