![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
Continuous-time Markov decision processes (MDPs), also known as controlled Markov chains, are used for modeling decision-making problems that arise in operations research (for instance, inventory, manufacturing, and queueing systems), computer science, communications engineering, control of populations (such as fisheries and epidemics), and management science, among many other fields. This volume provides a unified, systematic, self-contained presentation of recent developments on the theory and applications of continuous-time MDPs. The MDPs in this volume include most of the cases that arise in applications, because they allow unbounded transition and reward/cost rates. Much of the material appears for the first time in book form.
This book constitutes the refereed proceedings of the International Conference on Mathematical Modelling and Scientific Intelligence, ICMMSC 2012, Gandhigram, Tamil Nadu, India, in March 2012. The 62 revised full papers presented were carefully reviewed and selected from 332 submissions. The papers are organized in two topical sections on mathematical modelling and on scientific computation.
Global competition and growing costumer expectations force indus trial enterprises to reorganize their business processes and to support cost-effective customer services. Realizing the potential savings to be gained by exacting customer-delivery processes, logistics is currently sub ject to incisive changes. This upheaval aims at making competitive ad vantage from logistic services instead of viewing them simply as business necessity. With respect to this focus logistics management comprises the process of planning, implementing, and controlling the efficient, effective flow and storage of goods and services, and related information from point of origin to point of consumption for the purpose of conforming customer requirements I . This definition implies a holistic view on the logistic network, where the actors are suppliers, manufacturers, stock keepers, shipping agents, distributors, retailers and finally consumers. The flow of goods along the supply chain considers raw-materials, work-in-process parts, intermedi ate and finished products, and possibly waste. The prevailing manage ment of logistics operation is driven by aggregated forecasting of these material flows. Modern logistics management propagates a disaggregated view of the material flow in order to meet the precise requirements at the interface between actors in the supply chain. Replacing aggregated information by detailed values establishes the prerequisites for an integrated process planning which goes for the shift from anticipatory towards response based logistic81. Smaller units of goods are considered at shorter periods for planning, implementing and controlling the material flow. From Icf. the Council of Logistics Management (1995)."
Hamilton-Jacobi equations and other types of partial differential equa- tions of the first order are dealt with in many branches of mathematics, mechanics, and physics. These equations are usually nonlinear, and func- tions vital for the considered problems are not smooth enough to satisfy these equations in the classical sense. An example of such a situation can be provided by the value function of a differential game or an optimal control problem. It is known that at the points of differentiability this function satisfies the corresponding Hamilton-Jacobi-Isaacs-Bellman equation. On the other hand, it is well known that the value function is as a rule not everywhere differentiable and therefore is not a classical global solution. Thus in this case, as in many others where first-order PDE's are used, there arises necessity to introduce a notion of generalized solution and to develop theory and methods for constructing these solutions. In the 50s-70s, problems that involve nonsmooth solutions of first- order PDE's were considered by Bakhvalov, Evans, Fleming, Gel'fand, Godunov, Hopf, Kuznetzov, Ladyzhenskaya, Lax, Oleinik, Rozhdestven- ski1, Samarskii, Tikhonov, and other mathematicians. Among the inves- tigations of this period we should mention the results of S.N. Kruzhkov, which were obtained for Hamilton-Jacobi equation with convex Hamilto- nian. A review of the investigations of this period is beyond the limits of the present book. A sufficiently complete bibliography can be found in [58, 126, 128, 141].
Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsible for the "hardness" of the scheduling problem. Chapters 6, 7, and 8 are dedicated to the resolution of several scheduling problems. These examples illustrate the use and the practical efficiency of the constraint propagation methods of the previous chapters. They also show that besides constraint propagation, the exploration of the search space must be carefully designed, taking into account specific properties of the considered problem (e.g., dominance relations, symmetries, possible use of decomposition rules). Chapter 9 mentions various extensions of the model and presents promising research directions.
H-infinity engineering continues to establish itself as a discipline of applied mathematics. As such, this extensively illustrated monograph makes a significant application of H-infinity theory to electronic amplifier design, demonstrating how recent developments in H-infinity engineering equip amplifier designers with new tools and avenues for research. The presentation, at the interface of applied mathematics and engineering, emphasizes how to (1) compute the best possible performance available from any matching circuits; (2) benchmark existing matching solutions; and (3) generalize results to multiple amplifiers. As the monograph develops, many research directions are pointed out for both disciplines. The physical meaning of a mathematical problem is made explicit for the mathematician, while circuit problems are presented in the H-infinity framework for the engineer. A final chapter organizes these research topics into a collection of open problems ranging from electrical engineering, numerical implementations, and generalizations to H-infinity theory.
Problems with multiple objectives and criteria are generally known as multiple criteria optimization or multiple criteria decision-making (MCDM) problems. So far, these types of problems have typically been modelled and solved by means of linear programming. However, many real-life phenomena are of a nonlinear nature, which is why we need tools for nonlinear programming capable of handling several conflicting or incommensurable objectives. In this case, methods of traditional single objective optimization and linear programming are not enough; we need new ways of thinking, new concepts, and new methods - nonlinear multiobjective optimization. Nonlinear Multiobjective Optimization provides an extensive, up-to-date, self-contained and consistent survey, review of the literature and of the state of the art on nonlinear (deterministic) multiobjective optimization, its methods, its theory and its background. The amount of literature on multiobjective optimization is immense. The treatment in this book is based on approximately 1500 publications in English printed mainly after the year 1980. Problems related to real-life applications often contain irregularities and nonsmoothnesses. The treatment of nondifferentiable multiobjective optimization in the literature is rather rare. For this reason, this book contains material about the possibilities, background, theory and methods of nondifferentiable multiobjective optimization as well. This book is intended for both researchers and students in the areas of (applied) mathematics, engineering, economics, operations research and management science; it is meant for both professionals and practitioners in many different fields of application. The intention has been to provide a consistent summary that may help in selecting an appropriate method for the problem to be solved. It is hoped the extensive bibliography will be of value to researchers.
Among the most important problems confronting computer science is that of developing a paradigm appropriate to the discipline. Proponents of formal methods - such as John McCarthy, C.A.R. Hoare, and Edgar Dijkstra - have advanced the position that computing is a mathematical activity and that computer science should model itself after mathematics. Opponents of formal methods - by contrast, suggest that programming is the activity which is fundamental to computer science and that there are important differences that distinguish it from mathematics, which therefore cannot provide a suitable paradigm. Disagreement over the place of formal methods in computer science has recently arisen in the form of renewed interest in the nature and capacity of program verification as a method for establishing the reliability of software systems. A paper that appeared in Communications of the ACM entitled, Program Verification: The Very Idea', by James H. Fetzer triggered an extended debate that has been discussed in several journals and that has endured for several years, engaging the interest of computer scientists (both theoretical and applied) and of other thinkers from a wide range of backgrounds who want to understand computer science as a domain of inquiry. The editors of this collection have brought together many of the most interesting and important studies that contribute to answering questions about the nature and the limits of computer science. These include early papers advocating the mathematical paradigm by McCarthy, Naur, R. Floyd, and Hoare (in Part I), others that elaborate the paradigm by Hoare, Meyer, Naur, and Scherlis and Scott (in Part II), challenges, limits and alternatives explored by C. Floyd, Smith, Blum, and Naur (in Part III), and recent work focusing on formal verification by DeMillo, Lipton, and Perlis, Fetzer, Cohn, and Colburn (in Part IV). It provides essential resources for further study. This volume will appeal to scientists, philosophers, and laypersons who want to understand the theoretical foundations of computer science and be appropriately positioned to evaluate the scope and limits of the discipline.
Multicriterion Decision in Management: Principles and Practice is the first multicriterion analysis book devoted exclusively to discrete multicriterion decision making. Typically, multicriterion analysis is used in two distinct frameworks: Firstly, there is multiple criteria linear programming, which is an extension of the results of linear programming and its associated algorithms. Secondly, there is discrete multicriterion decision making, which is concerned with choices among a finite number of possible alternatives such as projects, investments, decisions, etc. This is the focus of this book. The book concentrates on the basic principles in the domain of discrete multicriterion analysis, and examines each of these principles in terms of their properties and their implications. In multicriterion decision analysis, any optimum in the strict sense of the term does not exist. Rather, multicriterion decision making utilizes tools, methods, and thinking to examine several solutions, each having their advantages and disadvantages, depending on one's point of view. Actually, various methods exist for reaching a good choice in a multicriterion setting and even a complete ranking of the alternatives. The book describes and compares these methods, so-called `aggregation methods', with their advantages and their shortcomings. Clearly, organizations are becoming more complex, and it is becoming harder and harder to disregard complexity of points of view, motivations, and objectives. The day of the single objective (profit, social environment, etc. ) is over and the wishes of all those involved in all their diversity must be taken into account. To do this, a basic knowledge of multicriterion decision analysis is necessary. The objective of this book is to supply that knowledge and enable it to be applied. The book is intended for use by practitioners (managers, consultants), researchers, and students in engineering and business.
The field of neural information processing has two main objects: investigation into the functioning of biological neural networks and use of artificial neural networks to sol ve real world problems. Even before the reincarnation of the field of artificial neural networks in mid nineteen eighties, researchers have attempted to explore the engineering of human brain function. After the reincarnation, we have seen an emergence of a large number of neural network models and their successful applications to solve real world problems. This volume presents a collection of recent research and developments in the field of neural information processing. The book is organized in three Parts, i.e., (1) architectures, (2) learning algorithms, and (3) applications. Artificial neural networks consist of simple processing elements called neurons, which are connected by weights. The number of neurons and how they are connected to each other defines the architecture of a particular neural network. Part 1 of the book has nine chapters, demonstrating some of recent neural network architectures derived either to mimic aspects of human brain function or applied in some real world problems. Muresan provides a simple neural network model, based on spiking neurons that make use of shunting inhibition, which is capable of resisting small scale changes of stimulus. Hoshino and Zheng simulate a neural network of the auditory cortex to investigate neural basis for encoding and perception of vowel sounds.
This book considers problems of optimization arising in the design of electromagnetic radiators and receivers, presenting a systematic general theory applicable to a wide class of structures. The theory is illustrated with examples, and indications of how the results can be applied to more complicated structures. The final chapter introduces techniques from multicriteria optimization in antenna design. References to mathematics and engineering literature guide readers through the necessary mathematical background.
Convexity of sets in linear spaces, and concavity and convexity of functions, lie at the root of beautiful theoretical results that are at the same time extremely useful in the analysis and solution of optimization problems, including problems of either single objective or multiple objectives. Not all of these results rely necessarily on convexity and concavity; some of the results can guarantee that each local optimum is also a global optimum, giving these methods broader application to a wider class of problems. Hence, the focus of the first part of the book is concerned with several types of generalized convex sets and generalized concave functions. In addition to their applicability to nonconvex optimization, these convex sets and generalized concave functions are used in the book's second part, where decision-making and optimization problems under uncertainty are investigated. Uncertainty in the problem data often cannot be avoided when dealing with practical problems. Errors occur in real-world data for a host of reasons. However, over the last thirty years, the fuzzy set approach has proved to be useful in these situations. It is this approach to optimization under uncertainty that is extensively used and studied in the second part of this book. Typically, the membership functions of fuzzy sets involved in such problems are neither concave nor convex. They are, however, often quasiconcave or concave in some generalized sense. This opens possibilities for application of results on generalized concavity to fuzzy optimization. Despite this obvious relation, applying the interface of these two areas has been limited to date. It is hoped that the combination of ideas and results from the field of generalized concavity on the one hand and fuzzy optimization on the other hand outlined and discussed in Generalized Concavity in Fuzzy Optimization and Decision Analysis will be of interest to both communities. Our aim is to broaden the classes of problems that the combination of these two areas can satisfactorily address and solve.
The International Conference on Finsler and Lagrange Geometry and its Applications: A Meeting of Minds, took place August 13-20, 1998 at the University of Alberta in Edmonton, Canada. The main objective of this meeting was to help acquaint North American geometers with the extensive modern literature on Finsler geometry and Lagrange geometry of the Japanese and European schools, each with its own venerable history, on the one hand, and to communicate recent advances in stochastic theory and Hodge theory for Finsler manifolds by the younger North American school, on the other. The intent was to bring together practitioners of these schools of thought in a Canadian venue where there would be ample opportunity to exchange information and have cordial personal interactions. The present set of refereed papers begins .with the Pedagogical Sec tion I, where introductory and brief survey articles are presented, one from the Japanese School and two from the European School (Romania and Hungary). These have been prepared for non-experts with the intent of explaining basic points of view. The Section III is the main body of work. It is arranged in alphabetical order, by author. Section II gives a brief account of each of these contribu tions with a short reference list at the end. More extensive references are given in the individual articles."
The last decade has seen a remarkable development of the "Marginal and Moment Problems" as a research area in Probability and Statistics. Its attractiveness stemmed from its lasting ability to provide a researcher with difficult theoretical problems that have direct consequences for appli cations outside of mathematics. The relevant research aims centered mainly along the following lines that very frequently met each other to provide sur prizing and useful results : -To construct a probability distribution (to prove its existence, at least) with a given support and with some additional inner stochastic property defined typically either by moments or by marginal distributions. -To study the geometrical and topological structure of the set of prob ability distributions generated by such a property mostly with the aim to propose a procedure that would result in a stochastic model with some optimal properties within the set of probability distributions. These research aims characterize also, though only very generally, the scientific program of the 1996 conference "Distributions with given marginals and moment problems" held at the beginning of September in Prague, Czech Republic, to perpetuate the tradition and achievements of the closely related 1990 Roma symposium "On Frechet Classes" 1 and 1993 Seattle" AMS Summer Conference on Marginal Problem".
Geometric dynamics is a tool for developing a mathematical representation of real world phenomena, based on the notion of a field line described in two ways: -as the solution of any Cauchy problem associated to a first-order autonomous differential system; -as the solution of a certain Cauchy problem associated to a second-order conservative prolongation of the initial system. The basic novelty of our book is the discovery that a field line is a geodesic of a suitable geometrical structure on a given space (Lorentz-Udri~te world-force law). In other words, we create a wider class of Riemann-Jacobi, Riemann-Jacobi-Lagrange, or Finsler-Jacobi manifolds, ensuring that all trajectories of a given vector field are geodesics. This is our contribution to an old open problem studied by H. Poincare, S. Sasaki and others. From the kinematic viewpoint of corpuscular intuition, a field line shows the trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc.
In November 2001 the Mathematical Research Center at Oberwolfach, Germany, hosted the third Conference on Mathematical Models and Numerical Simulation in Electronic Industry. It brought together researchers in mathematics, electrical engineering and scientists working in industry. The contributions to this volume try to bridge the gap between basic and applied mathematics, research in electrical engineering and the needs of industry.
The starting point of this volume was a conference entitled "Progress in Mathematical Programming," held at the Asilomar Conference Center in Pacific Grove, California, March 1-4, 1987. The main topic of the conference was developments in the theory and practice of linear programming since Karmarkar's algorithm. There were thirty presentations and approximately fifty people attended. Presentations included new algorithms, new analyses of algorithms, reports on computational experience, and some other topics related to the practice of mathematical programming. Interestingly, most of the progress reported at the conference was on the theoretical side. Several new polynomial algorithms for linear program- ming were presented (Barnes-Chopra-Jensen, Goldfarb-Mehrotra, Gonzaga, Kojima-Mizuno-Yoshise, Renegar, Todd, Vaidya, and Ye). Other algorithms presented were by Betke-Gritzmann, Blum, Gill-Murray-Saunders-Wright, Nazareth, Vial, and Zikan-Cottle. Efforts in the theoretical analysis of algo- rithms were also reported (Anstreicher, Bayer-Lagarias, Imai, Lagarias, Megiddo-Shub, Lagarias, Smale, and Vanderbei). Computational experiences were reported by Lustig, Tomlin, Todd, Tone, Ye, and Zikan-Cottle. Of special interest, although not in the main direction discussed at the conference, was the report by Rinaldi on the practical solution of some large traveling salesman problems. At the time of the conference, it was still not clear whether the new algorithms developed since Karmarkar's algorithm would replace the simplex method in practice. Alan Hoffman presented results on conditions under which linear programming problems can be solved by greedy algorithms.
This book provides a systematic and comprehensive account of asymptotic sets and functions from which a broad and useful theory emerges in the areas of optimization and variational inequalities. A variety of motivations leads mathematicians to study questions about attainment of the infimum in a minimization problem and its stability, duality and minmax theorems, convexification of sets and functions, and maximal monotone maps. For each there is the central problem of handling unbounded situations. Such problems arise in theory but also within the development of numerical methods. The book focuses on the notions of asymptotic cones and associated asymptotic functions that provide a natural and unifying framework for the resolution of these types of problems. These notions have been used largely and traditionally in convex analysis, yet these concepts play a prominent and independent role in both convex and nonconvex analysis. This book covers convex and nonconvex problems, offering detailed analysis and techniques that go beyond traditional approaches. The book will serve as a useful reference and self-contained text for researchers and graduate students in the fields of modern optimization theory and nonlinear analysis.
As our title reveals, we focus on optimal control methods and applications relevant to linear dynamic economic systems in discrete-time variables. We deal only with discrete cases simply because economic data are available in discrete forms, hence realistic economic policies should be established in discrete-time structures. Though many books have been written on optimal control in engineering, we see few on discrete-type optimal control. More over, since economic models take slightly different forms than do engineer ing ones, we need a comprehensive, self-contained treatment of linear optimal control applicable to discrete-time economic systems. The present work is intended to fill this need from the standpoint of contemporary macroeconomic stabilization. The work is organized as follows. In Chapter 1 we demonstrate instru ment instability in an economic stabilization problem and thereby establish the motivation for our departure into the optimal control world. Chapter 2 provides fundamental concepts and propositions for controlling linear deterministic discrete-time systems, together with some economic applica tions and numerical methods. Our optimal control rules are in the form of feedback from known state variables of the preceding period. When state variables are not observable or are accessible only with observation errors, we must obtain appropriate proxies for these variables, which are called "observers" in deterministic cases or "filters" in stochastic circumstances. In Chapters 3 and 4, respectively, Luenberger observers and Kalman filters are discussed, developed, and applied in various directions. Noticing that a separation principle lies between observer (or filter) and controller (cf."
The subject of the present book is sub differential calculus. The main source of this branch of functional analysis is the theory of extremal problems. For a start, we explicate the origin and statement of the principal problems of sub differential calculus. To this end, consider an abstract minimization problem formulated as follows: x E X, f(x) --+ inf. Here X is a vector space and f : X --+ iR is a numeric function taking possibly infinite values. In these circumstances, we are usually interested in the quantity inf f( x), the value of the problem, and in a solution or an optimum plan of the problem (i. e. , such an x that f(x) = inf f(X", if the latter exists. It is a rare occurrence to solve an arbitrary problem explicitly, i. e. to exhibit the value of the problem and one of its solutions. In this respect it becomes necessary to simplify the initial problem by reducing it to somewhat more manageable modifications formulated with the details of the structure of the objective function taken in due account. The conventional hypothesis presumed in attempts at theoretically approaching the reduction sought is as follows. Introducing an auxiliary function 1, one considers the next problem: x EX, f(x) -l(x) --+ inf. Furthermore, the new problem is assumed to be as complicated as the initial prob lem provided that 1 is a linear functional over X, i. e.
In delivering lectures and writing books, we were most often forced to pay absolutely no attention to a great body of interesting results and useful algorithms appearing in numerous sources and occasionally encountered. It was absolutely that most of these re sults would finally be forgotten because it is impossible to run through the entire variety of sources where these materials could be published. Therefore, we decided to do what we can to correct this situation. We discussed this problem with Ershov and came to an idea to write an encyclopedia of algorithms on graphs focusing our main attention on the algorithms already used in programming and their generalizations or modifications. We thought that it is reasonable to group all graphs into certain classes and place the algo rithms developed for each class into a separate book. The existence of trees, i. e., a class of graphs especially important for programming, also supported this decision. This monograph is the first but, as we hope, not the last book written as part of our project. It was preceded by two books "Algorithms on Trees" (1984) and "Algorithms of Processing of Trees" (1990) small editions of which were published at the Computer Center of the Siberian Division of the Russian Academy of Sciences. The books were distributed immediately and this made out our decision to prepare a combined mono graph on the basis of these books even stronger."
This book describes the rapidly developing field of interior point methods (IPMs). An extensive analysis is given of path-following methods for linear programming, quadratic programming and convex programming. These methods, which form a subclass of interior point methods, follow the central path, which is an analytic curve defined by the problem. Relatively simple and elegant proofs for polynomiality are given. The theory is illustrated using several explicit examples. Moreover, an overview of other classes of IPMs is given. It is shown that all these methods rely on the same notion as the path-following methods: all these methods use the central path implicitly or explicitly as a reference path to go to the optimum. For specialists in IPMs as well as those seeking an introduction to IPMs. The book is accessible to any mathematician with basic mathematical programming knowledge.
Many problems in statistics and econometrics offer themselves naturally to
optimization in statistics and econometrics, followed by detailed discussion of a relatively new and very powerful optimization heuristic, threshold accepting. The final part consists of many applications of the methods described earlier, encompassing experimental design, model selection, aggregation of tiime series, and censored quantile regression models. Those researching and working in econometrics, statistics and operations research are given the tools to apply optimization heuristic methods in their work. Postgraduate students of statistics and econometrics will find the book provides a good introduction to optimization heuristic methods.
This volume provides a comprehensive introduction to the theory of (deterministic) optimization. It covers both continuous and discrete optimization. This allows readers to study problems under different points-of-view, which supports a better understanding of the entire field. Many exercises are included to increase the reader's understanding.
Frontiers of Evolutionary Computation brings together eleven
contributions by international leading researchers discussing what
significant issues still remain unresolved in the field of
Evolutionary Computation (EC). They explore such topics as the role
of building blocks, the balancing of exploration with exploitation,
the modeling of EC algorithms, the connection with optimization
theory and the role of EC as a meta-heuristic method, to name a
few. The articles feature a mixture of informal discussion
interspersed with formal statements, thus providing the reader an
opportunity to observe a wide range of EC problems from the
investigative perspective of world-renowned researchers. These
prominent researchers include: Frontiers of Evolutionary Computation is ideal for researchers and students who want to follow the process of EC problem-solving and for those who want to consider what frontiers still await their exploration. " |
You may like...
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang
Hardcover
R2,132
Discovery Miles 21 320
Mathematical Optimization and Modeling…
Lucas Lincoln
Hardcover
Problem Solving and Uncertainty Modeling…
Pratiksha Saxena, Dipti Singh, …
Hardcover
R5,687
Discovery Miles 56 870
|