![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
Industrial optimization lies on the crossroads between mathematics, computer science, engineering and management. This book presents these fields in interdependence as a conversation between theoretical aspects of mathematics and computer science and the mathematical field of optimization theory at a practical level. The 19 case studies that were conducted by the author in real enterprises in cooperation and co-authorship with some of the leading industrial enterprises, including RWE, Vattenfall, EDF, PetroChina, Vestolit, Sasol, and Hella, illustrate the results that may be reasonably expected from an optimization project in a commercial enterprise. The book is aimed at persons working in industrial facilities as managers or engineers; it is also suitable for university students and their professors as an illustration of how the academic material may be used in real life. It will not make its reader a mathematician but it will help its reader in improving his plant.
Integer programming (IP) is a fascinating topic. Indeed, while linear programming (LP), its c- tinuous analogue, is well understood and extremely ef?cient LP software packages exist, solving an integer program can remain a formidable challenge, even for some small size problems. For instance, the following small (5-variable) IP problem (called the unbounded knapsack problem) min{213x?1928x?11111x?2345x +9123x} 1 2 3 4 5 s.t. 12223x +12224x +36674x +61119x +85569x = 89643482, 1 2 3 4 5 x ,x ,x ,x ,x?N, 1 2 3 4 5 taken from a list of dif?cult knapsack problems in Aardal and Lenstra [2], is not solved even by hours of computing, using for instance the last version of the ef?cient software package CPLEX. However,thisisnotabookonintegerprogramming,asverygoodonesonthistopicalreadyexist. For standard references on the theory and practice of integer programming, the interested reader is referred to, e.g., Nemhauser and Wolsey [113], Schrijver [121], Wolsey [136], and the more recent Bertsimas and Weismantel [21]. On the other hand, this book could provide a complement to the above books as it develops a rather unusual viewpoint.
Mathematical programming has know a spectacular diversification in the last few decades. This process has happened both at the level of mathematical research and at the level of the applications generated by the solution methods that were created. To write a monograph dedicated to a certain domain of mathematical programming is, under such circumstances,especially difficult. In the present monograph we opt for the domain of fractional programming. Interest of this subject was generated by the fact that various optimization problems from engineering and economics consider the minimization of a ratio between physical and/or economical functions, for example cost/time, cost/volume,cost/profit, or other quantities that measure the efficiency of a system. For example, the productivity of industrial systems, defined as the ratio between the realized services in a system within a given period of time and the utilized resources, is used as one of the best indicators of the quality of their operation. Such problems, where the objective function appears as a ratio of functions, constitute fractional programming problem. Due to its importance in modeling various decision processes in management science, operational research, and economics, and also due to its frequent appearance in other problems that are not necessarily economical, such as information theory, numerical analysis, stochastic programming, decomposition algorithms for large linear systems, etc., the fractional programming method has received particular attention in the last three decades.
There has been much recent progress in global optimization algo rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by the General Secretariat of Research and Tech nology of Greece, by the Ministry of Education of Greece, and several local Greek government agencies and companies. This volume contains a selective collection of refereed papers based on invited and contribut ing talks presented at this conference. The two themes of convexity and global optimization pervade this book. The conference provided a forum for researchers working on different aspects of convexity and global opti mization to present their recent discoveries, and to interact with people working on complementary aspects of mathematical programming."
Nonsmoothness and nonconvexity arise in numerous applications of mechan- ics and modeling due to the need for studying more and more complicated phe- nomena and real life applications. Mathematicians have started to provide the necessary tools and theoretical results underpinning these applications. Ap- plied mathematicians and engineers have begun to realize the benefits of this new area and are adopting, increasingly, these new tools in their work. New computational tools facilitate numerical applications and enable the theory to be tested, and the resulting feedback poses new theoretical questions. Because of the upsurge in activity in the area of nonsmooth and noncon- vex mechanics, Professors Gao and Ogden, together with the late Professor P.D. Panagiotopoulos, had planned to organize a Minisymposium with the title Nonsmooth and Nonconvex Mechanics within the ASME 1999 Mechanics & Materials Conference, June 27-30 1999, Blacksburg, Virginia. After the unex- pected death of Professor Panagiotopoulos the first two editors invited the third editor (Professor Stavroulakis) to join them. A large number of mathematical and engineering colleagues supported our efforts by presenting lectures at the Minisymposium in which the available mathematical methods were described and many problems of nonsmooth and nonconvex mechanics were discussed. The interest of the many participants encourages us all to continue our research efforts.
This text offers many multiobjective optimization methods accompanied by analytical examples, and it treats problems not only in engineering but also operations research and management. It explains how to choose the best method to solve a problem and uses three primary application examples: optimization of the numerical simulation of an industrial process; sizing of a telecommunication network; and decision-aid tools for the sorting of bids.
Optimization Theory and Methods can be used as a textbook for an optimization course for graduates and senior undergraduates. It is the result of the author's teaching and research over the past decade. It describes optimization theory and several powerful methods. For most methods, the book discusses an idea 's motivation, studies the derivation, establishes the global and local convergence, describes algorithmic steps, and discusses the numerical performance.
Stochastic programming - the science that provides us with tools to design and control stochastic systems with the aid of mathematical programming techniques - lies at the intersection of statistics and mathematical programming. The book Stochastic Programming is a comprehensive introduction to the field and its basic mathematical tools. While the mathematics is of a high level, the developed models offer powerful applications, as revealed by the large number of examples presented. The material ranges form basic linear programming to algorithmic solutions of sophisticated systems problems and applications in water resources and power systems, shipbuilding, inventory control, etc. Audience: Students and researchers who need to solve practical and theoretical problems in operations research, mathematics, statistics, engineering, economics, insurance, finance, biology and environmental protection.
Pairs of compact convex sets arise in the quasidifferential calculus of V.F. Demyanov and A.M. Rubinov as sub- and superdifferentials of quasidifferen- tiable functions (see [26]) and in the formulas for the numerical evaluation of the Aumann-Integral which were recently introduced in a series of papers by R. Baier and F. Lempio (see [4], [5], [10] and [9]) and R. Baier and E.M. Farkhi [6], [7], [8]. In the field of combinatorial convexity G. Ewald et al. [36] used an interesting construction called virtual polytope, which can also be represented as a pair of polytopes for the calculation of the combinatorial Picard group of a fan. Since in all mentioned cases the pairs of compact con- vex sets are not uniquely determined, minimal representations are of special to the existence of minimal pairs of compact importance. A problem related convex sets is the existence of reduced pairs of convex bodies, which has been studied by Chr. Bauer (see [14]).
This book reviews some of today's more complex problems, and reflects some of the important research directions in the field. Twenty-nine authors - largely from Montreal's GERAD Multi-University Research Center and who work in areas of theoretical statistics, applied statistics, probability theory, and stochastic processes - present survey chapters on various theoretical and applied problems of importance and interest to researchers and students across a number of academic domains.
As its title implies, Advances in Multicriteria Analysis presents the most recent developments in multicriteria analysis and in some of its principal areas of application, including marketing, research and development evaluation, financial planning, and medicine. Special attention is paid to the interaction between multicriteria analysis, decision support systems and preference modeling. The five sections of the book cover: methodology; problem structuring; utility assessment; multi-objective optimisation; real world applications. Audience: Researchers and professionals who are operations researchers, management scientists, computer scientists, statisticians, decision analysts, marketing managers and financial analysts.
Contains case studies from engineering and operations research Includes commented literature for each chapter
Many problems in science, technology and engineering are posed in the form of operator equations of the first kind, with the operator and RHS approximately known. But such problems often turn out to be ill-posed, having no solution, or a non-unique solution, and/or an unstable solution. Non-existence and non-uniqueness can usually be overcome by settling for generalised' solutions, leading to the need to develop regularising algorithms. The theory of ill-posed problems has advanced greatly since A. N. Tikhonov laid its foundations, the Russian original of this book (1990) rapidly becoming a classical monograph on the topic. The present edition has been completely updated to consider linear ill-posed problems with or without a priori constraints (non-negativity, monotonicity, convexity, etc.). Besides the theoretical material, the book also contains a FORTRAN program library. Audience: Postgraduate students of physics, mathematics, chemistry, economics, engineering. Engineers and scientists interested in data processing and the theory of ill-posed problems.
This collection of challenging and well-designed test problems arising in literature studies also contains a wide spectrum of applications, including pooling/blending operations, heat exchanger network synthesis, homogeneous azeotropic separation, and dynamic optimization and optimal control problems.
In t.lw fHll of !!)!)2, Professor Dr. M. Alt.ar, chairman of tIw newly established dppartnwnt or Managenwnt. wit.h Comput.er Science at thp Homanian -American Univprsity in Bucharest (a private univprsil.y), inl.roducod in t.he curriculum a course on DiffenHltial Equations and Optimal Cont.rol, asking lIS to teach such course. It was an inter8sting challengo, since for t.Iw first tim8 wo had to t8ach such mathemaLical course for st.udents with economic background and interosts. It was a natural idea to sl.m't by looking at pconomic models which were described by differpntial equations and for which problems in (\pcision making dir! ariso. Since many or such models were r!escribed in discret.e timp, wp eleculed to elpvolop in parallel t.he theory of differential equations anel thaI, of discrete-timo systpms aur! also control theory in continuous and discrete time. Tlw jll'eSPlu book is t.he result of our tpaehing px!wripnce wit.h this courge. It is an enlargud version of t.he actllal lectuf(~s where, depending on t.he background of tho St.lI(\('Ilts, not all proofs could be given in detail. We would like to express our grat.itude to tlw Board of the Romanian - American University, personally 1. 0 the Rector, Professor Dr. Ion Smedpscu, for support, encouragement and readinpss to accept advancnd ideas in tho curriculum. fhe authors express t.heir warmest thanks 1.0 Mrs. Monica Stan . Necula for tho oxcellent procC'ssing of t.he manuscript.
This volume summarizes and synthesizes an aspect of research work that has been done in the area of Generalized Convexity over the past few decades. Specifically, the book focuses on V-invex functions in vector optimization that have grown out of the work of Jeyakumar and Mond in the 1990 s. The authors integrate related research into the book and demonstrate the wide context from which the area has grown and continues to grow.
Multiwavelength Optical Networks systematically studies the major
research issues in WDM (Wavelength Division Multiplexing) optical
networks, such as routing and wavelength assignment, QoS multicast
routing, design of logical topologies, and placement of wavelength
converters. The book consists of two parts. The first part studies
the fundamental concepts and principles of WDM networks. The second
part discusses advanced and research issues of WDM networks.
Operations research often solves deterministic optimization problems based on elegantand conciserepresentationswhereall parametersarepreciselyknown. In the face of uncertainty, probability theory is the traditional tool to be appealed for, and stochastic optimization is actually a signi?cant sub-area in operations research. However, the systematic use of prescribed probability distributions so as to cope with imperfect data is partially unsatisfactory. First, going from a deterministic to a stochastic formulation, a problem may becomeintractable. Agoodexampleiswhengoingfromdeterministictostoch- tic scheduling problems like PERT. From the inception of the PERT method in the 1950's, it was acknowledged that data concerning activity duration times is generally not perfectly known and the study of stochastic PERT was launched quite early. Even if the power of today's computers enables the stochastic PERT to be addressed to a large extent, still its solutions often require simplifying assumptions of some kind. Another di?culty is that stochastic optimization problems produce solutions in the average. For instance, the criterion to be maximized is more often than not expected utility. This is not always a meaningful strategy. In the case when the underlying process is not repeated a lot of times, let alone being one-shot, it is not clear if this criterion is realistic, in particular if probability distributions are subjective. Expected utility was proposed as a rational criterion from ?rst principles by Savage. In his view, the subjective probability distribution was - sically an artefact useful to implement a certain ordering of solutions.
Optimum envelope-constrained filter design is concerned with time-domain synthesis of a filter such that its response to a specific input signal stays within prescribed upper and lower bounds, while minimizing the impact of input noise on the filter output or the impact of the shaped signal on other systems depending on the application. In many practical applications, such as in TV channel equalization, digital transmission, and pulse compression applied to radar, sonar and detection, the soft least square approach, which attempts to match the output waveform with a specific desired pulse, is not the most suitable one. Instead, it becomes necessary to ensure that the response stays within the hard envelope constraints defined by a set of continuous inequality constraints. The main advantage of using the hard envelope-constrained filter formulation is that it admits a whole set of allowable outputs. From this set one can then choose the one which results in the minimization of a cost function appropriate to the application at hand. The signal shaping problems so formulated are semi-infinite optimization problems. This monograph presents in a unified manner results that have been generated over the past several years and are scattered in the research literature. The material covered in the monograph includes problem formulation, numerical optimization algorithms, filter robustness issues and practical examples of the application of envelope constrained filter design. Audience: Postgraduate students, researchers in optimization and telecommunications engineering, and applied mathematicians.
Paul Williams, a leading authority on modeling in integer programming, has written a concise, readable introduction to the science and art of using modeling in logic for integer programming. Written for graduate and postgraduate students, as well as academics and practitioners, the book is divided into four chapters that all avoid the typical format of definitions, theorems and proofs and instead introduce concepts and results within the text through examples. References are given at the end of each chapter to the more mathematical papers and texts on the subject, and exercises are included to reinforce and expand on the material in the chapter. Methods of solving with both logic and IP are given and their connections are described. Applications in diverse fields are discussed, and Williams shows how IP models can be expressed as satisfiability problems and solved as such.
Computing has become essential for the modeling, analysis, and
optimization of systems. This book is devoted to algorithms,
computational analysis, and decision models. The chapters are
organized in two parts: optimization models of decisions and models
of pricing and equilibria.
System Modeling and Optimization is an indispensable reference for anyone interested in the recent advances in these two disciplines. The book collects, for the first time, selected articles from the 21st and most recent IFIP TC 7 conference in Sophia Antipolis, France. Applied mathematicians and computer scientists can attest to the ever-growing influence of these two subjects. The practical applications of system modeling and optimization can be seen in a number of fields: environmental science, transport and telecommunications, image analysis, free boundary problems, bioscience, and non-cylindrical evolution control, to name just a few. New developments in each of these fields have contributed to a more complex understanding of both system modeling and optimization. Editors John Cagnol and Jean-Paul Zol sio, chairs of the conference, have assembled System Modeling and Optimization to present the most up-to-date developments to professionals and academics alike.
The problem of "Shortest Connectivity," which is discussed here, has a long and convoluted history. Many scientists from many fields as well as laymen have stepped on its stage. Usually, the problem is known as Steiner's Problem and it can be described more precisely in the following way: Given a finite set of points in a metric space, search for a network that connects these points with the shortest possible length. This shortest network must be a tree and is called a Steiner Minimal Tree (SMT). It may contain vertices different from the points which are to be connected. Such points are called Steiner points. Steiner's Problem seems disarmingly simple, but it is rich with possibilities and difficulties, even in the simplest case, the Euclidean plane. This is one of the reasons that an enormous volume of literature has been published, starting in 1 the seventeenth century and continuing until today. The difficulty is that we look for the shortest network overall. Minimum span ning networks have been well-studied and solved eompletely in the case where only the given points must be connected. The novelty of Steiner's Problem is that new points, the Steiner points, may be introduced so that an intercon necting network of all these points will be shorter. This also shows that it is impossible to solve the problem with combinatorial and geometric methods alone."
Continuous optimization is the study of problems in which we wish to opti mize (either maximize or minimize) a continuous function (usually of several variables) often subject to a collection of restrictions on these variables. It has its foundation in the development of calculus by Newton and Leibniz in the 17* DEGREES century. Nowadys, continuous optimization problems are widespread in the mathematical modelling of real world systems for a very broad range of applications. Solution methods for large multivariable constrained continuous optimiza tion problems using computers began with the work of Dantzig in the late 1940s on the simplex method for linear programming problems. Recent re search in continuous optimization has produced a variety of theoretical devel opments, solution methods and new areas of applications. It is impossible to give a full account of the current trends and modern applications of contin uous optimization. It is our intention to present a number of topics in order to show the spectrum of current research activities and the development of numerical methods and applications."
This book concentrates on providing technical tools to make the user of Multiple Criteria Decision Making (MCDM) methodologies independent of bulky optimization computations. These bulky computations have been a necessary, but limiting, characteristic of interactive MCDM methodologies and algorithms. The book removes these limitations of MCDM problems by reducing a problem's computational complexity. The result is a wider and more functional general framework for presenting, teaching, implementing and applying a wide range of MCDM methodologies. |
You may like...
High Performance Computing in Science…
Siegfried Wagner, Matthias Steinmetz, …
Hardcover
R4,157
Discovery Miles 41 570
Smart Buildings Digitalization - Case…
O.V. Gnana Swathika, K. Karthikeyan, …
Hardcover
R4,499
Discovery Miles 44 990
Supercomputing - Third Russian…
Vladimir Voevodin, Sergey Sobolev
Paperback
R1,476
Discovery Miles 14 760
Sacred Britannia - The Gods & Rituals of…
Miranda Aldhouse Green
Paperback
R369
Discovery Miles 3 690
|