![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
This book is the first organized collection of some results that have been obtained by the authors, their collaborators, and other researchers in the variational approach to structured deformations. It sets the basis and makes more accessible the theoretical apparatus for assigning an energy to a structured deformation, thereby providing motivation to researchers in applied mathematics, continuum mechanics, engineering, and materials science to study the deformation of a solid body without committing at the outset to a specific mechanical theory. Researchers will benefit from an approach in which elastic, plastic, and fracture phenomena can be treated in a unified way. ​The book is intended for an audience acquainted with measure theory, the theory of functions of bounded variation, and continuum mechanics. Any students in their last years of undergraduate studies, graduate students, and researchers with a background in applied mathematics, the calculus of variations, and continuum mechanics will have the prerequisite to read this book.
Inverse eigenvalue problems arise in a remarkable variety of applications and associated with any inverse eigenvalue problem are two fundamental questions-the theoretic issue on solvability and the practical issue on computability. Both questions are difficult and challenging. In this text, the authors discuss the fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques as well as several open problems. This is the first book in the authoritative Numerical Mathematics and Scientific Computation series to cover numerical linear algebra, a broad area of numerical analysis. Authored by two world-renowned researchers, this book is aimed at graduates and researchers in applied mathematics, engineering and computer science and makes an ideal graduate text.
Optimization is an essential technique for solving problems in areas as diverse as accounting, computer science and engineering. Assuming only basic linear algebra and with a clear focus on the fundamental concepts, this textbook is the perfect starting point for first- and second-year undergraduate students from a wide range of backgrounds and with varying levels of ability. Modern, real-world examples motivate the theory throughout. The authors keep the text as concise and focused as possible, with more advanced material treated separately or in starred exercises. Chapters are self-contained so that instructors and students can adapt the material to suit their own needs and a wide selection of over 140 exercises gives readers the opportunity to try out the skills they gain in each section. Solutions are available for instructors. The book also provides suggestions for further reading to help students take the next step to more advanced material.
Since Additive Manufacturing (AM) techniques allow the manufacture of complex-shaped structures the combination of lightweight construction, topology optimization, and AM is of significant interest. Besides the established continuum topology optimization methods, less attention is paid to algorithm-driven optimization based on linear optimization, which can also be used for topology optimization of truss-like structures. To overcome this shortcoming, we combined linear optimization, Computer-Aided Design (CAD), numerical shape optimization, and numerical simulation into an algorithm-driven product design process for additively manufactured truss-like structures. With our Ansys SpaceClaim add-in construcTOR, which is capable of obtaining ready-for-machine-interpretation CAD data of truss-like structures out of raw mathematical optimization data, the high performance of (heuristic-based) optimization algorithms implemented in linear programming software is now available to the CAD community.
This richly illustrated book introduces the subject of optimization to a broad audience with a balanced treatment of theory, models and algorithms. Through numerous examples from statistical learning, operations research, engineering, finance and economics, the text explains how to formulate and justify models while accounting for real-world considerations such as data uncertainty. It goes beyond the classical topics of linear, nonlinear and convex programming and deals with nonconvex and nonsmooth problems as well as games, generalized equations and stochastic optimization. The book teaches theoretical aspects in the context of concrete problems, which makes it an accessible onramp to variational analysis, integral functions and approximation theory. More than 100 exercises and 200 fully developed examples illustrate the application of the concepts. Readers should have some foundation in differential calculus and linear algebra. Exposure to real analysis would be helpful but is not prerequisite.
Optimization is an essential tool in every project in every large-scale organization, whether in business, industry, engineering, and science. In recent years, algorithmic advances and software and hardware improvements have given managers a powerful framework for making key decisions about everything from production planning to scheduling distribution. This comprehensive resource brings together in one volume the major advances in the field. Distinguished contributors focus on the algorithmic and computational aspects of optimization, particularly the most recent methods for solving a wide range of decision-making problems. The book is divided into three main sections: algorithms, covering every type of programming; applications, where computational tools are put to work solving tasks in planning, production, distribution, scheduling and other decisions in project management; and software, a comprehensive introduction to languages and systems. Designed as a practical resource for proprammers and project planners and managers, it covers optimization problems in a wide range of settings, from the airline and aerospace industries to telecommunications, finance, health systems, biomedicine, and engineering.
This open access book is an introduction to the regularity theory for free boundary problems. The focus is on the one-phase Bernoulli problem, which is of particular interest as it deeply influenced the development of the modern free boundary regularity theory and is still an object of intensive research. The exposition is organized around four main theorems, which are dedicated to the one-phase functional in its simplest form. Many of the methods and the techniques presented here are very recent and were developed in the context of different free boundary problems. We also give the detailed proofs of several classical results, which are based on some universal ideas and are recurrent in the free boundary, PDE and the geometric regularity theories. This book is aimed at graduate students and researches and is accessible to anyone with a moderate level of knowledge of elliptical PDEs.
This book is designed to serve as a textbook for courses offered to undergraduate and graduate students enrolled in Mathematics. The first edition of this book was published in 2015. As there is a demand for the next edition, it is quite natural to take note of the several suggestions received from the users of the earlier edition over the past six years. This is the prime motivation for bringing out a revised second edition with a thorough revision of all the chapters. The book provides a clear understanding of the basic concepts of differential and integral calculus starting with the concepts of sequences and series of numbers, and also introduces slightly advanced topics such as sequences and series of functions, power series, and Fourier series which would be of use for other courses in mathematics for science and engineering programs. The salient features of the book are - precise definitions of basic concepts; several examples for understanding the concepts and for illustrating the results; includes proofs of theorems; exercises within the text; a large number of problems at the end of each chapter as home-assignments. The student-friendly approach of the exposition of the book would be of great use not only for students but also for the instructors. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in a mathematics course.
This book addresses and disseminates state-of-the-art research and development of differential evolution (DE) and its recent advances, such as the development of adaptive, self-adaptive and hybrid techniques. Differential evolution is a population-based meta-heuristic technique for global optimization capable of handling non-differentiable, non-linear and multi-modal objective functions. Many advances have been made recently in differential evolution, from theory to applications. This book comprises contributions which include theoretical developments in DE, performance comparisons of DE, hybrid DE approaches, parallel and distributed DE for multi-objective optimization, software implementations, and real-world applications. The book is useful for researchers, practitioners, and students in disciplines such as optimization, heuristics, operations research and natural computing.
This volume offers a wealth of interdisciplinary approaches to artificial intelligence, machine learning and optimization tools, which contribute to the optimization of urban features towards forming smart, sustainable, and livable future cities. Special features include: New research on the design of city elements and smart systems with respect to new technologies and scientific thinking Discussions on the theoretical background that lead to smart cities for the future New technologies and principles of research that can promote ideas of artificial intelligence and machine learning in optimized urban environments The book engages students and researchers in the subjects of artificial intelligence, machine learning, and optimization tools in smart sustainable cities as eminent international experts contribute their research results and thinking in its chapters. Overall, its audience can benefit from a variety of disciplines including, architecture, engineering, physics, mathematics, computer science, and related fields.
This text, covering a very large span of numerical methods and optimization, is primarily aimed at advanced undergraduate and graduate students. A background in calculus and linear algebra are the only mathematical requirements. The abundance of advanced methods and practical applications will be attractive to scientists and researchers working in different branches of engineering. The reader is progressively introduced to general numerical methods and optimization algorithms in each chapter. Examples accompany the various methods and guide the students to a better understanding of the applications. The user is often provided with the opportunity to verify their results with complex programming code. Each chapter ends with graduated exercises which furnish the student with new cases to study as well as ideas for exam/homework problems for the instructor. A set of programs made in Matlab (TM) is available on the author's personal website and presents both numerical and optimization methods.
This book collects chapters on contemporary topics on metric fixed point theory and its applications in science, engineering, fractals, and behavioral sciences. Chapters contributed by renowned researchers from across the world, this book includes several useful tools and techniques for the development of skills and expertise in the area. The book presents the study of common fixed points in a generalized metric space and fixed point results with applications in various modular metric spaces. New insight into parametric metric spaces as well as study of variational inequalities and variational control problems have been included.
The 2020 International Conference on Uncertainty Quantification & Optimization gathered together internationally renowned researchers in the fields of optimization and uncertainty quantification. The resulting proceedings cover all related aspects of computational uncertainty management and optimization, with particular emphasis on aerospace engineering problems. The book contributions are organized under four major themes: Applications of Uncertainty in Aerospace & Engineering Imprecise Probability, Theory and Applications Robust and Reliability-Based Design Optimisation in Aerospace Engineering Uncertainty Quantification, Identification and Calibration in Aerospace Models This proceedings volume is useful across disciplines, as it brings the expertise of theoretical and application researchers together in a unified framework.
Optimal Design for Nonlinear Response Models discusses the theory and applications of model-based experimental design with a strong emphasis on biopharmaceutical studies. The book draws on the authors' many years of experience in academia and the pharmaceutical industry. While the focus is on nonlinear models, the book begins with an explanation of the key ideas, using linear models as examples. Applying the linearization in the parameter space, it then covers nonlinear models and locally optimal designs as well as minimax, optimal on average, and Bayesian designs. The authors also discuss adaptive designs, focusing on procedures with non-informative stopping. The common goals of experimental design-such as reducing costs, supporting efficient decision making, and gaining maximum information under various constraints-are often the same across diverse applied areas. Ethical and regulatory aspects play a much more prominent role in biological, medical, and pharmaceutical research. The authors address all of these issues through many examples in the book.
This is a book on optimal control problems (OCPs) for partial differential equations (PDEs) that evolved from a series of courses taught by the authors in the last few years at Politecnico di Milano, both at the undergraduate and graduate levels. The book covers the whole range spanning from the setup and the rigorous theoretical analysis of OCPs, the derivation of the system of optimality conditions, the proposition of suitable numerical methods, their formulation, their analysis, including their application to a broad set of problems of practical relevance. The first introductory chapter addresses a handful of representative OCPs and presents an overview of the associated mathematical issues. The rest of the book is organized into three parts: part I provides preliminary concepts of OCPs for algebraic and dynamical systems; part II addresses OCPs involving linear PDEs (mostly elliptic and parabolic type) and quadratic cost functions; part III deals with more general classes of OCPs that stand behind the advanced applications mentioned above. Starting from simple problems that allow a "hands-on" treatment, the reader is progressively led to a general framework suitable to face a broader class of problems. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The three parts of the book are suitable to readers with variable mathematical backgrounds, from advanced undergraduate to Ph.D. levels and beyond. We believe that applied mathematicians, computational scientists, and engineers may find this book useful for a constructive approach toward the solution of OCPs in the context of complex applications.
This book provides a broad overview of project and project management principles, processes, and success/failure factors. It also provides a state of the art of applications of the project management concepts, especially in the field of construction projects, based on the Project Management Body of Knowledge (PMBOK). The slate of geographically and professionally diverse authors illustrates project management as a multidisciplinary undertaking that integrates renewable and non-renewable resources in a systematic process to achieve project goals. The book describes assessment based on technical and operational goals and meeting schedules and budgets.
This book describes the development of innovative non-centralized optimization-based control schemes to solve economic dispatch problems of large-scale energy systems. Particularly, it focuses on communication and cooperation processes of local controllers, which are integral parts of such schemes. The economic dispatch problem, which is formulated as a convex optimization problem with edge-based coupling constraints, is solved by using methodologies in distributed optimization over time-varying networks, together with distributed model predictive control, and system partitioning techniques. At first, the book describes two distributed optimization methods, which are iterative and require the local controllers to exchange information with each other at each iteration. In turn, it shows that the sequence produced by these methods converges to an optimal solution when some conditions, which include how the controllers must communicate and cooperate, are satisfied. Further, it proposes an information exchange protocol to cope with possible communication link failures. Finally, the proposed distributed optimization methods are extended to the cases with random communication networks and asynchronous updates. Overall, this book presents a set of improved predictive control and distributed optimization methods, together with a rigorous mathematical analysis of each proposed algorithms. It describes a comprehensive approach to cope with communication and cooperation issues of non-centralized control schemes and show how the improved schemes can be successfully applied to solve the economic dispatch problems of large-scale energy systems.
This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton's principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton's principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces.
In this book, the theory, methods and applications of separable optimization are considered. Some general results are presented, techniques of approximating the separable problem by linear programming problem, and dynamic programming are also studied. Convex separable programs subject to inequality/ equality constraint(s) and bounds on variables are also studied and convergent iterative algorithms of polynomial complexity are proposed. As an application, these algorithms are used in the implementation of stochastic quasigradient methods to some separable stochastic programs. The problems of numerical approximation of tabulated functions and numerical solution of overdetermined systems of linear algebraic equations and some systems of nonlinear equations are solved by separable convex unconstrained minimization problems. Some properties of the Knapsack polytope are also studied. This second edition includes a substantial amount of new and revised content. Three new chapters, 15-17, are included. Chapters 15-16 are devoted to the further analysis of the Knapsack problem. Chapter 17 is focused on the analysis of a nonlinear transportation problem. Three new Appendices (E-G) are also added to this edition and present technical details that help round out the coverage. Optimization problems and methods for solving the problems considered are interesting not only from the viewpoint of optimization theory, optimization methods and their applications, but also from the viewpoint of other fields of science, especially the artificial intelligence and machine learning fields within computer science. This book is intended for the researcher, practitioner, or engineer who is interested in the detailed treatment of separable programming and wants to take advantage of the latest theoretical and algorithmic results. It may also be used as a textbook for a special topics course or as a supplementary textbook for graduate courses on nonlinear and convex optimization.
This concise text contains the most commonly-encountered examination problems in the topic of Optimization Models and Methods, an important module in engineering and other disciplines where there exists an increasing need to operate optimally and sustainably under constraints, such as tighter resource availability, environmental consideration, and cost pressures. This book is comprehensive in coverage as it includes a diverse spectrum of problems from numerical open-ended questions that probe creative thinking to the relation of concepts to realistic settings. The book adopts many examples of design scenarios as context for curating sample problems. This will help students relate desktop problem-solving to tackling real-world problems. Succinct yet rigorous, with over a 100 pages of problems and corresponding worked solutions presented in detail, the book is ideal for students of engineering, applied science, and market analysis.
This volume is devoted to the study of hyperbolic free boundary problems possessing variational structure. Such problems can be used to model, among others, oscillatory motion of a droplet on a surface or bouncing of an elastic body against a rigid obstacle. In the case of the droplet, for example, the membrane surrounding the fluid in general forms a positive contact angle with the obstacle, and therefore the second derivative is only a measure at the contact free boundary set. We will show how to derive the mathematical problem for a few physical systems starting from the action functional, discuss the mathematical theory, and introduce methods for its numerical solution. The mathematical theory and numerical methods depart from the classical approaches in that they are based on semi-discretization in time, which facilitates the application of the modern theory of calculus of variations.
Written by prominent experts in the field, this monograph provides the first comprehensive and unified presentation of the structural, algorithmic, and applied aspects of the theory of Boolean functions. The book focuses on algebraic representations of Boolean functions, especially disjunctive and conjunctive normal form representations. It presents in this framework the fundamental elements of the theory (Boolean equations and satisfiability problems, prime implicants and associated short representations, dualization), an in-depth study of special classes of Boolean functions (quadratic, Horn, shellable, regular, threshold, read-once functions and their characterization by functional equations), and two fruitful generalizations of the concept of Boolean functions (partially defined functions and pseudo-Boolean functions). Several topics are presented here in book form for the first time. Because of the unique depth and breadth of the unified treatment that it provides and of its emphasis on algorithms and applications, this monograph will have special appeal for researchers and graduate students in discrete mathematics, operations research, computer science, engineering, and economics.
Deep connections exist between harmonic and applied analysis and the diverse yet connected topics of machine learning, data analysis, and imaging science. This volume explores these rapidly growing areas and features contributions presented at the second and third editions of the Summer Schools on Applied Harmonic Analysis, held at the University of Genova in 2017 and 2019. Each chapter offers an introduction to essential material and then demonstrates connections to more advanced research, with the aim of providing an accessible entrance for students and researchers. Topics covered include ill-posed problems; concentration inequalities; regularization and large-scale machine learning; unitarization of the radon transform on symmetric spaces; and proximal gradient methods for machine learning and imaging.
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including adaptive observations, sensitivity analysis, parameter estimation and AI applications. The book is useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Unifies the field of optimization with a few geometric principles. The number of books that can legitimately be called classics in their fields is small indeed, but David Luenberger's Optimization by Vector Space Methods certainly qualifies. Not only does Luenberger clearly demonstrate that a large segment of the field of optimization can be effectively unified by a few geometric principles of linear vector space theory, but his methods have found applications quite removed from the engineering problems to which they were first applied. Nearly 30 years after its initial publication, this book is still among the most frequently cited sources in books and articles on financial optimization. The book uses functional analysis —the study of linear vector spaces —to impose simple, intuitive interpretations on complex, infinite-dimensional problems. The early chapters offer an introduction to functional analysis, with applications to optimization. Topics addressed include linear space, Hilbert space, least-squares estimation, dual spaces, and linear operators and adjoints. Later chapters deal explicitly with optimization theory, discussing
End-of-chapter problems constitute a major component of this book and come in two basic varieties. The first consists of miscellaneous mathematical problems and proofs that extend and supplement the theoretical material in the text; the second, optimization problems, illustrates further areas of application and helps the reader formulate and solve practical problems. For professionals and graduate students in engineering, mathematics, operations research, economics, and business and finance, Optimization by Vector Space Methods is an indispensable source of problem-solving tools. |
You may like...
Never Touch a Dinosaur!
Make Believe Ideas Ltd, Rosie Greening
Board book
R285
Discovery Miles 2 850
|