![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
This book presents a new meta-heuristic algorithm, inspired by the self-defense mechanisms of plants in nature. Numerous published works have demonstrated the various self-defense mechanisms (survival strategies) plants use to protect themselves against predatory organisms, such as herbivorous insects. The proposed algorithm is based on the predator-prey mathematical model originally proposed by Lotka and Volterra, consisting of two nonlinear first-order differential equations, which allow the growth of two interacting populations (prey and predator) to be modeled. The proposed meta-heuristic is able to produce excellent results in several sets of benchmark optimization problems. Further, fuzzy logic is used for dynamic parameter adaptation in the algorithm.
This book explores key examples concerning the implementation of information technology and mathematical modeling to solve issues concerning environmental sustainability. The examples include using fuzzy weighted multivariate regression to predict the water quality index at Perak River in Malaysia; using wireless sensor networks (WSNs) for a remote river water pollution monitoring system; deriving biomass activated carbon from oil palm shell; and assessing the performance of a PV/T air solar collector. The book offers a valuable resource for all graduate students and researchers who are working in this rapidly growing area.
This Festschrift is in honor of Chris Hankin, Professor at the Imperial College in London, UK, on the Occasion of His 65th Birthday.Chris Hankin is a Fellow of the Institute for Security Science and Technology and a Professor of Computing Science. His research is in cyber security, data analytics and semantics-based program analysis. He leads multidisciplinary projects focused on developing advanced visual analytics and providing better decision support to defend against cyber attacks. This Festschrift is a collection of scientific contributions related to the topics that have marked the research career of Professor Chris Hankin. The contributions have been written to honour Chris' career and on the occasion of his retirement.
This self-contained book describes social influence from a computational point of view, with a focus on recent and practical applications, models, algorithms and open topics for future research. Researchers, scholars, postgraduates and developers interested in research on social networking and the social influence related issues will find this book useful and motivating. The latest research on social computing is presented along with and illustrations on how to understand and manipulate social influence for knowledge discovery by applying various data mining techniques in real world scenarios. Experimental reports, survey papers, models and algorithms with specific optimization problems are depicted. The main topics covered in this book are: chrematistics of social networks, modeling of social influence propagation, popular research problems in social influence analysis such as influence maximization, rumor blocking, rumor source detection, and multiple social influence competing.
This book highlights state-of-the-art research on renewable energy integration technology and suitable and efficient power generation, discussing smart grids, renewable energy grid integration, prediction control models, and econometric models for predicting the global solar radiation and factors that affect solar radiation, performance evaluation of photovoltaic systems, and improved energy consumption prediction models. It discusses several methods, algorithms, environmental data-based performance analyses, and experimental results to help readers gain a detailed understanding of the pros and cons of technologies in this rapidly growing area. Accordingly, it offers a valuable resource for students and researchers working on renewable energy optimization models.
This book considers a range of problems in operations research, which are formulated through various mathematical models such as complementarity, variational inequalities, multiobjective optimization, fixed point problems, noncooperative games and inverse optimization. Moreover, the book subsumes all these models under a common structure that allows them to be formulated in a unique format: the Ky Fan inequality. It subsequently focuses on this unifying equilibrium format, providing a comprehensive overview of the main theoretical results and solution algorithms, together with a wealth of applications and numerical examples. Particular emphasis is placed on the role of nonlinear optimization techniques - e.g. convex optimization, nonsmooth calculus, proximal point and descent algorithms - as valuable tools for analyzing and solving Ky Fan inequalities.
This volume provides a broad and uniform introduction of PDE-constrained optimization as well as to document a number of interesting and challenging applications. Many science and engineering applications necessitate the solution of optimization problems constrained by physical laws that are described by systems of partial differential equations (PDEs) . As a result, PDE-constrained optimization problems arise in a variety of disciplines including geophysics, earth and climate science, material science, chemical and mechanical engineering, medical imaging and physics. This volume is divided into two parts. The first part provides a comprehensive treatment of PDE-constrained optimization including discussions of problems constrained by PDEs with uncertain inputs and problems constrained by variational inequalities. Special emphasis is placed on algorithm development and numerical computation. In addition, a comprehensive treatment of inverse problems arising in the oil and gas industry is provided. The second part of this volume focuses on the application of PDE-constrained optimization, including problems in optimal control, optimal design, and inverse problems, among other topics.
This SpringerBrief bridges the gap between the areas of simulation studies on the one hand, and optimization with natural computing on the other. Since natural computing methods have been applied with great success in several application areas, a review concerning potential benefits and pitfalls for simulation studies is merited. The brief presents such an overview and combines it with an introduction to natural computing and selected major approaches, as well as with a concise treatment of general simulation-based optimization. As such, it is the first review which covers both the methodological background and recent application cases. The brief is intended to serve two purposes: First, it can be used to gain more information concerning natural computing, its major dialects, and their usage for simulation studies. It also covers the areas of multi-objective optimization and neuroevolution. While the latter is only seldom mentioned in connection with simulation studies, it is a powerful potential technique. Second, the reader is provided with an overview of several areas of simulation-based optimization which range from logistic problems to engineering tasks. Additionally, the brief focuses on the usage of surrogate and meta-models. The brief presents recent application examples.
This volume consists of selected essays by participants of the workshop Control at Large Scales: Energy Markets and Responsive Grids held at the Institute for Mathematics and its Applications, Minneapolis, Minnesota, U.S.A. from May 9-13, 2016. The workshop brought together a diverse group of experts to discuss current and future challenges in energy markets and controls, along with potential solutions. The volume includes chapters on significant challenges in the design of markets and incentives, integration of renewable energy and energy storage, risk management and resilience, and distributed and multi-scale optimization and control. Contributors include leading experts from academia and industry in power systems and markets as well as control science and engineering. This volume will be of use to experts and newcomers interested in all aspects of the challenges facing the creation of a more sustainable electricity infrastructure, in areas such as distributed and stochastic optimization and control, stability theory, economics, policy, and financial mathematics, as well as in all aspects of power system operation.
This clear and concise textbook provides a rigorous introduction to the calculus of variations, depending on functions of one variable and their first derivatives. It is based on a translation of a German edition of the book Variationsrechnung (Vieweg+Teubner Verlag, 2010), translated and updated by the author himself. Topics include: the Euler-Lagrange equation for one-dimensional variational problems, with and without constraints, as well as an introduction to the direct methods. The book targets students who have a solid background in calculus and linear algebra, not necessarily in functional analysis. Some advanced mathematical tools, possibly not familiar to the reader, are given along with proofs in the appendix. Numerous figures, advanced problems and proofs, examples, and exercises with solutions accompany the book, making it suitable for self-study. The book will be particularly useful for beginning graduate students from the physical, engineering, and mathematical sciences with a rigorous theoretical background.
This authored monograph presents a study on fundamental limits and robustness of stability and stabilization of time-delay systems, with an emphasis on time-varying delay, robust stabilization, and newly emerged areas such as networked control and multi-agent systems. The authors systematically develop an operator-theoretic approach that departs from both the traditional algebraic approach and the currently pervasive LMI solution methods. This approach is built on the classical small-gain theorem, which enables the author to draw upon powerful tools and techniques from robust control theory. The book contains motivating examples and presents mathematical key facts that are required in the subsequent sections. The target audience primarily comprises researchers and professionals in the field of control theory, but the book may also be beneficial for graduate students alike.
This book develops a new approach called parameter advising for finding a parameter setting for a sequence aligner that yields a quality alignment of a given set of input sequences. In this framework, a parameter advisor is a procedure that automatically chooses a parameter setting for the input, and has two main ingredients: (a) the set of parameter choices considered by the advisor, and (b) an estimator of alignment accuracy used to rank alignments produced by the aligner. On coupling a parameter advisor with an aligner, once the advisor is trained in a learning phase, the user simply inputs sequences to align, and receives an output alignment from the aligner, where the advisor has automatically selected the parameter setting. The chapters first lay out the foundations of parameter advising, and then cover applications and extensions of advising. The content * examines formulations of parameter advising and their computational complexity, * develops methods for learning good accuracy estimators, * presents approximation algorithms for finding good sets of parameter choices, and * assesses software implementations of advising that perform well on real biological data. Also explored are applications of parameter advising to * adaptive local realignment, where advising is performed on local regions of the sequences to automatically adapt to varying mutation rates, and * ensemble alignment, where advising is applied to an ensemble of aligners to effectively yield a new aligner of higher quality than the individual aligners in the ensemble. The book concludes by offering future directions in advising research.
This book presents a systematic approach to analyze nature-inspired algorithms. Beginning with an introduction to optimization methods and algorithms, this book moves on to provide a unified framework of mathematical analysis for convergence and stability. Specific nature-inspired algorithms include: swarm intelligence, ant colony optimization, particle swarm optimization, bee-inspired algorithms, bat algorithm, firefly algorithm, and cuckoo search. Algorithms are analyzed from a wide spectrum of theories and frameworks to offer insight to the main characteristics of algorithms and understand how and why they work for solving optimization problems. In-depth mathematical analyses are carried out for different perspectives, including complexity theory, fixed point theory, dynamical systems, self-organization, Bayesian framework, Markov chain framework, filter theory, statistical learning, and statistical measures. Students and researchers in optimization, operations research, artificial intelligence, data mining, machine learning, computer science, and management sciences will see the pros and cons of a variety of algorithms through detailed examples and a comparison of algorithms.
This basic book has been used at the middle schools in Shanghai, China for more than 10 years. The book presents carefully-selected contents in order to achieve the roles of enlightenment and popularization. It mainly includes: Chapter 1: Human Brains, Computers and Fuzzy Mathematics; Chapter 2: Matrix, Fuzzy Relations and Fuzzy Matrix; Chapter 3: Fuzzy Control; Chapter 4: Fuzzy Statistics and Fuzzy Probability and Chapter 5: Fuzzy Linear Programming. It includes at the end of each chapter concise, interesting and profound reading and thinking materials, and a certain amount of exercises so as to make it an informative and interesting textbook. This book can be used not only as a textbook in senior middle schools, and in vocational colleges, but also as a primer for individually learning fuzzy mathematics.
Organizations and businesses strive toward excellence, and solutions to problems are based mostly on judgment and experience. However, increased competition and consumer demands require that the solutions be optimum and not just feasible. Theory leads to algorithms. Algorithms need to be translated into computer codes. Engineering problems need to be modeled. Optimum solutions are obtained using theory and computers, and then interpreted. Revised and expanded in its third edition, this textbook integrates theory, modeling, development of numerical methods, and problem solving, thus preparing students to apply optimization to real-world problems. This text covers a broad variety of optimization problems using: unconstrained, constrained, gradient, and non-gradient techniques; duality concepts; multi-objective optimization; linear, integer, geometric, and dynamic programming with applications; and finite element-based optimization. It is ideal for advanced undergraduate or graduate courses in optimization design and for practicing engineers.
This book highlights the latest developments in the geometry of measurable sets, presenting them in simple, straightforward terms. It addresses nonlocal notions of perimeter and curvature and studies in detail the minimal surfaces associated with them. These notions of nonlocal perimeter and curvature are defined on the basis of a non-singular kernel. Further, when the kernel is appropriately rescaled, they converge toward the classical perimeter and curvature as the rescaling parameter tends to zero. In this way, the usual notions can be recovered by using the nonlocal ones. In addition, nonlocal heat content is studied and an asymptotic expansion is obtained. Given its scope, the book is intended for undergraduate and graduate students, as well as senior researchers interested in analysis and/or geometry.
This book offers the first comprehensive taxonomy for multimodal optimization algorithms, work with its root in topics such as niching, parallel evolutionary algorithms, and global optimization. The author explains niching in evolutionary algorithms and its benefits; he examines their suitability for use as diagnostic tools for experimental analysis, especially for detecting problem (type) properties; and he measures and compares the performances of niching and canonical EAs using different benchmark test problem sets. His work consolidates the recent successes in this domain, presenting and explaining use cases, algorithms, and performance measures, with a focus throughout on the goals of the optimization processes and a deep understanding of the algorithms used. The book will be useful for researchers and practitioners in the area of computational intelligence, particularly those engaged with heuristic search, multimodal optimization, evolutionary computing, and experimental analysis.
This book presents powerful techniques for solving global optimization problems on manifolds by means of evolutionary algorithms, and shows in practice how these techniques can be applied to solve real-world problems. It describes recent findings and well-known key facts in general and differential topology, revisiting them all in the context of application to current optimization problems. Special emphasis is put on game theory problems. Here, these problems are reformulated as constrained global optimization tasks and solved with the help of Fuzzy ASA. In addition, more abstract examples, including minimizations of well-known functions, are also included. Although the Fuzzy ASA approach has been chosen as the main optimizing paradigm, the book suggests that other metaheuristic methods could be used as well. Some of them are introduced, together with their advantages and disadvantages. Readers should possess some knowledge of linear algebra, and of basic concepts of numerical analysis and probability theory. Many necessary definitions and fundamental results are provided, with the formal mathematical requirements limited to a minimum, while the focus is kept firmly on continuous problems. The book offers a valuable resource for students, researchers and practitioners. It is suitable for university courses on optimization and for self-study.
This book presents the topology optimization theory for laminar flows with low and moderate Reynolds numbers, based on the density method and level-set method, respectively. The density-method-based theory offers efficient convergence, while the level-set-method-based theory can provide anaccurate mathematical expression of the structural boundary. Unsteady, body-force-driven and two-phase properties are basic characteristics of the laminar flows. The book discusses these properties, which are typical of microfluidics and one of the research hotspots in the area of Micro-Electro-Mechanical Systems (MEMS), providing an efficient inverse design approach for microfluidic structures. To demonstrate the applications of this topology optimization theory in the context of microfluidics, it also investigates inverse design for the micromixer, microvalve and micropump, which are key elements in lab-on-chip devices.
This text provides a framework in which the main objectives of the field of uncertainty quantification (UQ) are defined and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favorite problems to understand their strengths and weaknesses, also making the text suitable for a self-study. Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation and numerous application areas in science and engineering. This text is designed as an introduction to UQ for senior undergraduate and graduate students with a mathematical or statistical background and also for researchers from the mathematical sciences or from applications areas who are interested in the field. T. J. Sullivan was Warwick Zeeman Lecturer at the Mathematics Institute of the University of Warwick, United Kingdom, from 2012 to 2015. Since 2015, he is Junior Professor of Applied Mathematics at the Free University of Berlin, Germany, with specialism in Uncertainty and Risk Quantification.
This book reports on the latest advances in adaptive critic control with robust stabilization for uncertain nonlinear systems. Covering the core theory, novel methods, and a number of typical industrial applications related to the robust adaptive critic control field, it develops a comprehensive framework of robust adaptive strategies, including theoretical analysis, algorithm design, simulation verification, and experimental results. As such, it is of interest to university researchers, graduate students, and engineers in the fields of automation, computer science, and electrical engineering wishing to learn about the fundamental principles, methods, algorithms, and applications in the field of robust adaptive critic control. In addition, it promotes the development of robust adaptive critic control approaches, and the construction of higher-level intelligent systems.
This book constitutes the refereed proceedings of the 10th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2019 held in East Lansing, MI, USA, in March 2019. The 59 revised full papers were carefully reviewed and selected from 76 submissions. The papers are divided into 8 categories, each representing a key area of current interest in the EMO field today. They include theoretical developments, algorithmic developments, issues in many-objective optimization, performance metrics, knowledge extraction and surrogate-based EMO, multi-objective combinatorial problem solving, MCDM and interactive EMO methods, and applications.
The interaction between mathematicians, statisticians and econometricians working in actuarial sciences and finance is producing numerous meaningful scientific results. This volume introduces new ideas, in the form of four-page papers, presented at the international conference Mathematical and Statistical Methods for Actuarial Sciences and Finance (MAF), held at Universidad Carlos III de Madrid (Spain), 4th-6th April 2018. The book covers a wide variety of subjects in actuarial science and financial fields, all discussed in the context of the cooperation between the three quantitative approaches. The topics include: actuarial models; analysis of high frequency financial data; behavioural finance; carbon and green finance; credit risk methods and models; dynamic optimization in finance; financial econometrics; forecasting of dynamical actuarial and financial phenomena; fund performance evaluation; insurance portfolio risk analysis; interest rate models; longevity risk; machine learning and soft-computing in finance; management in insurance business; models and methods for financial time series analysis, models for financial derivatives; multivariate techniques for financial markets analysis; optimization in insurance; pricing; probability in actuarial sciences, insurance and finance; real world finance; risk management; solvency analysis; sovereign risk; static and dynamic portfolio selection and management; trading systems. This book is a valuable resource for academics, PhD students, practitioners, professionals and researchers, and is also of interest to other readers with quantitative background knowledge.
The research and review papers presented in this volume provide an overview of the main issues, findings, and open questions in cutting-edge research on the fields of modeling, optimization and dynamics and their applications to biology, economics, energy, finance, industry, physics and psychology. Given the scientific relevance of the innovative applications and emerging issues they address, the contributions to this volume, written by some of the world's leading experts in mathematics, economics and other applied sciences, will be seminal to future research developments and will spark future works and collaborations. The majority of the papers presented in this volume were written by participants of the 4th International Conference on Dynamics, Games and Science: Decision Models in a Complex Economy (DGS IV), held at the National Distance Education University (UNED) in Madrid, Spain in June 2016 and of the 8th Berkeley Bioeconomy Conference: The Future of Biofuels, held at the UC Berkeley Alumni House in April 2015.
This book focuses on metaheuristic methods and its applications to real-world problems in Engineering. The first part describes some key metaheuristic methods, such as Bat Algorithms, Particle Swarm Optimization, Differential Evolution, and Particle Collision Algorithms. Improved versions of these methods and strategies for parameter tuning are also presented, both of which are essential for the practical use of these important computational tools. The second part then applies metaheuristics to problems, mainly in Civil, Mechanical, Chemical, Electrical, and Nuclear Engineering. Other methods, such as the Flower Pollination Algorithm, Symbiotic Organisms Search, Cross-Entropy Algorithm, Artificial Bee Colonies, Population-Based Incremental Learning, Cuckoo Search, and Genetic Algorithms, are also presented. The book is rounded out by recently developed strategies, or hybrid improved versions of existing methods, such as the Lightning Optimization Algorithm, Differential Evolution with Particle Collisions, and Ant Colony Optimization with Dispersion - state-of-the-art approaches for the application of computational intelligence to engineering problems. The wide variety of methods and applications, as well as the original results to problems of practical engineering interest, represent the primary differentiation and distinctive quality of this book. Furthermore, it gathers contributions by authors from four countries - some of which are the original proponents of the methods presented - and 18 research centers around the globe. |
You may like...
The Concept of Causality in the…
Jacek Jadacki, Edward Swiderski
Hardcover
R4,530
Discovery Miles 45 300
Groups, Norms and Practices - Essays on…
Ladislav Koren, Hans Bernhard Schmid, …
Hardcover
R1,424
Discovery Miles 14 240
At the Sources of the Twentieth-Century…
Anna Brozek, Jacek Jadacki
Hardcover
R3,525
Discovery Miles 35 250
|