![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
This book covers the conventional and most recent theories and applications in the area of evolutionary algorithms, swarm intelligence, and meta-heuristics. Each chapter offers a comprehensive description of a specific algorithm, from the mathematical model to its practical application. Different kind of optimization problems are solved in this book, including those related to path planning, image processing, hand gesture detection, among others. All in all, the book offers a tutorial on how to design, adapt, and evaluate evolutionary algorithms. Source codes for most of the proposed techniques have been included as supplementary materials on a dedicated webpage.
This book explores mathematics in a wide variety of applications, ranging from problems in electronics, energy and the environment, to mechanics and mechatronics. The book gathers 81 contributions submitted to the 20th European Conference on Mathematics for Industry, ECMI 2018, which was held in Budapest, Hungary in June 2018. The application areas include: Applied Physics, Biology and Medicine, Cybersecurity, Data Science, Economics, Finance and Insurance, Energy, Production Systems, Social Challenges, and Vehicles and Transportation. In turn, the mathematical technologies discussed include: Combinatorial Optimization, Cooperative Games, Delay Differential Equations, Finite Elements, Hamilton-Jacobi Equations, Impulsive Control, Information Theory and Statistics, Inverse Problems, Machine Learning, Point Processes, Reaction-Diffusion Equations, Risk Processes, Scheduling Theory, Semidefinite Programming, Stochastic Approximation, Spatial Processes, System Identification, and Wavelets. The goal of the European Consortium for Mathematics in Industry (ECMI) conference series is to promote interaction between academia and industry, leading to innovations in both fields. These events have attracted leading experts from business, science and academia, and have promoted the application of novel mathematical technologies to industry. They have also encouraged industrial sectors to share challenging problems where mathematicians can provide fresh insights and perspectives. Lastly, the ECMI conferences are one of the main forums in which significant advances in industrial mathematics are presented, bringing together prominent figures from business, science and academia to promote the use of innovative mathematics in industry.
This book presents the results of a European-Chinese collaborative research project, Manipulation of Reynolds Stress for Separation Control and Drag Reduction (MARS), including an analysis and discussion of the effects of a number of active flow control devices on the discrete dynamic components of the turbulent shear layers and Reynolds stress. From an application point of view, it provides a positive and necessary step to control individual structures that are larger in scale and lower in frequency compared to the richness of the temporal and spatial scales in turbulent separated flows.
This book features a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in B ethlehem, Pennsylvania, USA between August 16-18, 2017. The conference brought together a diverse group of researchers and practitioners working on both theoretical and practical aspects of continuous and discrete optimization. Topics covered include algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and address the application of deterministic andstochastic optimization techniques in energy, finance, logistics, analytics, health, and other important fields. The selected contributions in this book illustrate the broad diversity of ideas discussed at the meeting.
This book discusses the stability of axially moving materials, which are encountered in process industry applications such as papermaking. A special emphasis is given to analytical and semianalytical approaches. As preliminaries, we consider a variety of problems across mechanics involving bifurcations, allowing to introduce the techniques in a simplified setting. In the main part of the book, the fundamentals of the theory of axially moving materials are presented in a systematic manner, including both elastic and viscoelastic material models, and the connection between the beam and panel models. The issues that arise in formulating boundary conditions specifically for axially moving materials are discussed. Some problems involving axially moving isotropic and orthotropic elastic plates are analyzed. Analytical free-vibration solutions for axially moving strings with and without damping are derived. A simple model for fluid--structure interaction of an axially moving panel is presented in detail. This book is addressed to researchers, industrial specialists and students in the fields of theoretical and applied mechanics, and of applied and computational mathematics.
This book gathers a selection of peer-reviewed papers presented at the International Conference on Operations Research (OR 2019), which was held at Technische Universitat Dresden, Germany, on September 4-6, 2019, and was jointly organized by the German Operations Research Society (GOR) the Austrian Operations Research Society (OEGOR), and the Swiss Operational Research Society (SOR/ASRO). More than 600 scientists, practitioners and students from mathematics, computer science, business/economics and related fields attended the conference and presented more than 400 papers in plenary presentations, parallel topic streams, as well as special award sessions. The respective papers discuss classical mathematical optimization, statistics and simulation techniques. These are complemented by computer science methods, and by tools for processing data, designing and implementing information systems. The book also examines recent advances in information technology, which allow big data volumes to be processed and enable real-time predictive and prescriptive business analytics to drive decisions and actions. Lastly, it includes problems modeled and treated while taking into account uncertainty, risk management, behavioral issues, etc.
This book collects the latest theoretical and technological concepts in the design and control of various linear machines and drive systems. Discussing advances in the new linear machine topologies, integrated modeling, multi-objective optimization techniques, and high-performance control strategies, it focuses on emerging applications of linear machines in transportation and energy systems. The book presents both theoretical and practical/experimental results, providing a consistent compilation of fundamental theories, a compendium of current research and development activities as well as new directions to overcome critical limitations.
This edited book reports on recent developments in the theory of evolutionary computation, or more generally the domain of randomized search heuristics. It starts with two chapters on mathematical methods that are often used in the analysis of randomized search heuristics, followed by three chapters on how to measure the complexity of a search heuristic: black-box complexity, a counterpart of classical complexity theory in black-box optimization; parameterized complexity, aimed at a more fine-grained view of the difficulty of problems; and the fixed-budget perspective, which answers the question of how good a solution will be after investing a certain computational budget. The book then describes theoretical results on three important questions in evolutionary computation: how to profit from changing the parameters during the run of an algorithm; how evolutionary algorithms cope with dynamically changing or stochastic environments; and how population diversity influences performance. Finally, the book looks at three algorithm classes that have only recently become the focus of theoretical work: estimation-of-distribution algorithms; artificial immune systems; and genetic programming. Throughout the book the contributing authors try to develop an understanding for how these methods work, and why they are so successful in many applications. The book will be useful for students and researchers in theoretical computer science and evolutionary computing.
This Springer brief addresses the challenges encountered in the study of the optimization of time-nonhomogeneous Markov chains. It develops new insights and new methodologies for systems in which concepts such as stationarity, ergodicity, periodicity and connectivity do not apply. This brief introduces the novel concept of confluencity and applies a relative optimization approach. It develops a comprehensive theory for optimization of the long-run average of time-nonhomogeneous Markov chains. The book shows that confluencity is the most fundamental concept in optimization, and that relative optimization is more suitable for treating the systems under consideration than standard ideas of dynamic programming. Using confluencity and relative optimization, the author classifies states as confluent or branching and shows how the under-selectivity issue of the long-run average can be easily addressed, multi-class optimization implemented, and Nth biases and Blackwell optimality conditions derived. These results are presented in a book for the first time and so may enhance the understanding of optimization and motivate new research ideas in the area.
This volume collects papers, based on invited talks given at the IMA workshop in Modeling, Stochastic Control, Optimization, and Related Applications, held at the Institute for Mathematics and Its Applications, University of Minnesota, during May and June, 2018. There were four week-long workshops during the conference. They are (1) stochastic control, computation methods, and applications, (2) queueing theory and networked systems, (3) ecological and biological applications, and (4) finance and economics applications. For broader impacts, researchers from different fields covering both theoretically oriented and application intensive areas were invited to participate in the conference. It brought together researchers from multi-disciplinary communities in applied mathematics, applied probability, engineering, biology, ecology, and networked science, to review, and substantially update most recent progress. As an archive, this volume presents some of the highlights of the workshops, and collect papers covering a broad range of topics.
This proceedings provides novel concepts and techniques for air traffic management (ATM) and communications, navigation, and surveillance (CNS) systems. The volume consists of selected papers from the 5th ENRI International Workshop on ATM/CNS (EIWAC2017) held in Tokyo in November 2017, the theme of which was "Drafting Future Skies". Included are key topics to realize safer and more efficient skies in the future, linked to the integrated conference theme consisting of long-term visions based on presentations from various fields. The proceedings is dedicated not only to researchers, academicians, and university students, but also to engineers in the industry, air navigation service providers (ANSPs), and regulators of aviation.
This book presents a novel framework, known as Active Robust Optimization, which provides the tools for evaluating, comparing and optimizing changeable products. Since any product that can change its configuration during normal operation may be considered a "changeable product," the framework is widely applicable. Further, the methodology enables designers to use adaptability to deal with uncertainties and so avoid over-conservative designs. Offering a comprehensive overview of the framework, including its unique features, such as its ability to optimally respond to uncertain situations, the book also defines a new class of optimization problem and examines the effects of changes in various parameters on their solution. Lastly, it discusses innovative approaches for solving the problem and demonstrates these with two examples from different fields in engineering design: optimization of an optical table and optimization of a gearbox.
This book presents the state of the art in designing high-performance algorithms that combine simulation and optimization in order to solve complex optimization problems in science and industry, problems that involve time-consuming simulations and expensive multi-objective function evaluations. As traditional optimization approaches are not applicable per se, combinations of computational intelligence, machine learning, and high-performance computing methods are popular solutions. But finding a suitable method is a challenging task, because numerous approaches have been proposed in this highly dynamic field of research. That's where this book comes in: It covers both theory and practice, drawing on the real-world insights gained by the contributing authors, all of whom are leading researchers. Given its scope, if offers a comprehensive reference guide for researchers, practitioners, and advanced-level students interested in using computational intelligence and machine learning to solve expensive optimization problems.
This book provides a detailed understanding of optimization methods as they are implemented in a variety of manufacturing, fabrication and machining processes. It covers the implementation of statistical methods, multi-criteria decision making methods and evolutionary techniques for single and multi-objective optimization to improve quality, productivity, and sustainability in manufacturing. It reports on the theoretical aspects, special features, recent research and latest development in the field. Optimization of Manufacturing Processes is a valuable source of information for researchers and practitioners, as it fills the gap where no dedicated book is available on intelligent manufacturing/modeling and optimization in manufacturing. Readers will develop an understanding of the implementation of statistical and evolutionary techniques for modeling and optimization in manufacturing.
This book provides a comprehensive study of turnpike phenomenon arising in optimal control theory. The focus is on individual (non-generic) turnpike results which are both mathematically significant and have numerous applications in engineering and economic theory. All results obtained in the book are new. New approaches, techniques, and methods are rigorously presented and utilize research from finite-dimensional variational problems and discrete-time optimal control problems to find the necessary conditions for the turnpike phenomenon in infinite dimensional spaces. The semigroup approach is employed in the discussion as well as PDE descriptions of continuous-time dynamics. The main results on sufficient and necessary conditions for the turnpike property are completely proved and the numerous illustrative examples support the material for the broad spectrum of experts. Mathematicians interested in the calculus of variations, optimal control and in applied functional analysis will find this book a useful guide to the turnpike phenomenon in infinite dimensional spaces. Experts in economic and engineering modeling as well as graduate students will also benefit from the developed techniques and obtained results.
This monograph presents new theories and methods for fixed-time cooperative control of multi-agent systems. Fundamental concepts of fixed-time stability and stabilization are introduced with insightful understanding. This book presents solutions for several problems of fixed-time cooperative control using systematic design methods. The book compares fixed-time cooperative control with asymptotic cooperative control, demonstrating how the former can achieve better closed-loop performance and disturbance rejection properties. It also discusses the differences from finite-time control, and shows how fixed-time cooperative control can produce the faster rate of convergence and provide an explicit estimate of the settling time independent of initial conditions. This monograph presents multiple applications of fixed-time control schemes, including to distributed optimization of multi-agent systems, making it useful to students, researchers and engineers alike.
This book constitutes the refereed post-conference proceedings on Learning and Intelligent Optimization, LION 14, held in Athens, Greece, in May 2020. The 37 full papers presented together with one invited paper have been carefully reviewed and selected from 75 submissions. LION deals with designing and engineering ways of "learning" about the performance of different techniques, and ways of using past experience about the algorithm behavior to improve performance in the future. Intelligent learning schemes for mining the knowledge obtained online or offline can improve the algorithm design process and simplify the applications of high-performance optimization methods. Combinations of different algorithms can further improve the robustness and performance of the individual components. Due to the COVID-19 pandemic, LION 14 was not held as a physical meeting.
This book explores various renewal processes in the context of probability theory, uncertainty theory and chance theory. It also covers the applications of these renewal processes in maintenance models and insurance risk models. The methods used to derive the limit of the renewal rate, the reward rate, and the availability rate are of particular interest, as they can easily be extended to the derivation of other models. Its comprehensive and systematic treatment of renewal processes, renewal reward processes and the alternating renewal process is one of the book's major features, making it particularly valuable for readers who are interested in learning about renewal theory. Given its scope, the book will benefit researchers, engineers, and graduate students in the fields of mathematics, information science, operations research, industrial engineering, etc.
This book offers a rigorous mathematical analysis of fuzzy geometrical ideas. It demonstrates the use of fuzzy points for interpreting an imprecise location and for representing an imprecise line by a fuzzy line. Further, it shows that a fuzzy circle can be used to represent a circle when its description is not known precisely, and that fuzzy conic sections can be used to describe imprecise conic sections. Moreover, it discusses fundamental notions on fuzzy geometry, including the concepts of fuzzy line segment and fuzzy distance, as well as key fuzzy operations, and includes several diagrams and numerical illustrations to make the topic more understandable. The book fills an important gap in the literature, providing the first comprehensive reference guide on the fuzzy mathematics of imprecise image subsets and imprecise geometrical objects. Mainly intended for researchers active in fuzzy optimization, it also includes chapters relevant for those working on fuzzy image processing and pattern recognition. Furthermore, it is a valuable resource for beginners interested in basic operations on fuzzy numbers, and can be used in university courses on fuzzy geometry, dealing with imprecise locations, imprecise lines, imprecise circles, and imprecise conic sections.
In today's world, with an increase in the breadth and scope of real-world engineering optimization problems as well as with the advent of big data, improving the performance and efficiency of algorithms for solving such problems has become an indispensable need for specialists and researchers. In contrast to conventional books in the field that employ traditional single-stage computational, single-dimensional, and single-homogeneous optimization algorithms, this book addresses multiple newfound architectures for meta-heuristic music-inspired optimization algorithms. These proposed algorithms, with multi-stage computational, multi-dimensional, and multi-inhomogeneous structures, bring about a new direction in the architecture of meta-heuristic algorithms for solving complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data. The architectures of these new algorithms may also be appropriate for finding an optimal solution or a Pareto-optimal solution set with higher accuracy and speed in comparison to other optimization algorithms, when feasible regions of the solution space and/or dimensions of the optimization problem increase. This book, unlike conventional books on power systems problems that only consider simple and impractical models, deals with complicated, techno-economic, real-world, large-scale models of power systems operation and planning. Innovative applicable ideas in these models make this book a precious resource for specialists and researchers with a background in power systems operation and planning. Provides an understanding of the optimization problems and algorithms, particularly meta-heuristic optimization algorithms, found in fields such as engineering, economics, management, and operations research; Enhances existing architectures and develops innovative architectures for meta-heuristic music-inspired optimization algorithms in order to deal with complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data; Addresses innovative multi-level, techno-economic, real-world, large-scale, computational-logical frameworks for power systems operation and planning, and illustrates practical training on implementation of the frameworks using the meta-heuristic music-inspired optimization algorithms.
Master the design and operation of perfusion cell cultures with this authoritative reference. Discover the current state-of-the-art in the design and operation of continuous bioreactors, with emphasis on mammalian cell cultures for producing therapeutic proteins. Topics include the current market for recombinant therapeutic proteins, current industry challenges and the potential contribution of continuous manufacturing. Provides coverage of every step of process development and reactor operation, including small scale screening to lab-scale and scale-up to manufacturing scale. Illustrated through real-life case studies, this is a perfect resource for groups active in the cell culture field, as well as graduate students in areas such as chemical engineering, biotechnology, chemistry and biology, and to those in the pharmaceutical industry, particularly biopharma, biotechnology and food or agro industry.
This book introduces readers to the use of R codes for optimization problems. First, it provides the necessary background to understand data envelopment analysis (DEA), with a special emphasis on fuzzy DEA. It then describes DEA models, including fuzzy DEA models, and shows how to use them to solve optimization problems with R. Further, it discusses the main advantages of R in optimization problems, and provides R codes based on real-world data sets throughout. Offering a comprehensive review of DEA and fuzzy DEA models and the corresponding R codes, this practice-oriented reference guide is intended for masters and Ph.D. students in various disciplines, as well as practitioners and researchers.
Oleg Wilfer presents a new conjugate duality concept for geometric and cone constrained optimization problems whose objective functions are a composition of finitely many functions. As an application, the author derives results for single minmax location problems formulated by means of extended perturbed minimal time functions as well as for multi-facility minmax location problems defined by gauges. In addition, he provides formulae of projections onto the epigraphs of gauges to solve these kinds of location problems numerically by using parallel splitting algorithms. Numerical comparisons of recent methods show the excellent performance of the proposed solving technique. About the Author: Dr. Oleg Wilfer received his PhD at the Faculty of Mathematics of Chemnitz University of Technology, Germany. He is currently working as a development engineer in the automotive industry.
This Springer brief discusses the use of control engineering methods to plan a cancer therapy which tends to reduce tumour size in patients, striking a balance that minimizes the toxic effects of the treatment. The authors address the design and computation of impulsive control therapies, a methodology previously underexplored in the application of control methods to medical modelling. This allows simulation of such discrete events as taking a pill rather than relying on the supply of therapy being continuous and steady. The book begins with an introduction to the topic, before moving onto pharmacokinetic, pharmacodynamical and tumour-growth models and explaining how they describe the relationship between a certain therapy plan and the evolution of cancer. This is placed firmly in the context of work introducing impulsive differential equations. The final chapter summarizes the research presented and suggests future areas of research to encourage readers in taking the subject forward. This book is of interest to biomedical engineers, researchers and students, particularly those with a background in systems and control engineering.
This book gathers the most essential results, including recent ones, on linear-quadratic optimal control problems, which represent an important aspect of stochastic control. It presents results for two-player differential games and mean-field optimal control problems in the context of finite and infinite horizon problems, and discusses a number of new and interesting issues. Further, the book identifies, for the first time, the interconnections between the existence of open-loop and closed-loop Nash equilibria, solvability of the optimality system, and solvability of the associated Riccati equation, and also explores the open-loop solvability of mean-filed linear-quadratic optimal control problems. Although the content is largely self-contained, readers should have a basic grasp of linear algebra, functional analysis and stochastic ordinary differential equations. The book is mainly intended for senior undergraduate and graduate students majoring in applied mathematics who are interested in stochastic control theory. However, it will also appeal to researchers in other related areas, such as engineering, management, finance/economics and the social sciences. |
You may like...
Analytics, Operations, and Strategic…
Gerald William Evans, William E. Biles, …
Hardcover
R5,333
Discovery Miles 53 330
Handbook of Research Methods for Supply…
Stephen Childe, Anabela Soares
Hardcover
R7,609
Discovery Miles 76 090
Management and Inter/Intra…
Vasilica-Maria Margalina, Jose Maria Lavin de la Cavada
Hardcover
R6,064
Discovery Miles 60 640
Robust Optimization of Spline Models and…
Ayse OEzmen
Hardcover
Uncertainty Management with Fuzzy and…
Rafael Bello, Rafael Falcon, …
Hardcover
R2,721
Discovery Miles 27 210
Operations Management - Global…
Nigel Slack, Alistair Brandon-Jones, …
Paperback
(4)R1,144 Discovery Miles 11 440
Modelling and Decisions in Economics…
Ulrike Leopold-Wildburger, Gustav Feichtinger, …
Hardcover
R2,819
Discovery Miles 28 190
|