![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
Quantitativeapproachesforsolvingproductionplanningandinventorymanagement problems in industry have gained growing importance in the past years. Due to the increasinguse of AdvancedPlanningSystems, a widespreadpracticalapplicationof the sophisticated optimization models and algorithms developed by the Production Management and Operations Research community now seem within reach. The possibility that productscan be replaced by certain substitute productsexists in various application areas of production planning and inventory management. Substitutions can be useful for a number of reasons, among others to circ- vent production and supply bottlenecks and disruptions, increase the service level, reduce setup costs and times, and lower inventories and thereby decrease ca- tal lockup. Considering the current trend in industry towards shorter product life cycles and greater product variety, the importance of substitutions appears likely to grow. Closely related to substitutions are ?exible bills-of-materials and recipes in multi-level production systems. However, so far, the aspect of substitutions has not attracted much attention in academic literature. Existing lot-sizing models matching complex requirements of industrial optimization problems (e.g., constrained capacities, sequence-dependent setups, multiple resources) such as the Capacitated Lot-Sizing Problem with Sequence-Dependent Setups (CLSD) and the General Lot-Sizing and Scheduling Problem for Multiple Production Stages (GLSPMS) do not feature in substitution options.
With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence, and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids, and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms.
This book constitutes the refereed proceedings of the 6th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2011, held in Ouro Preto, Brazil, in April 2011. The 42 revised full papers presented were carefully reviewed and selected from 83 submissions. The papers deal with fundamental questions of EMO theory, such as the development of algorithmically efficient tools for the evaluation of solution-set quality, the theoretical questions related to solution archiving and others. They report on the continuing effort in the development of algorithms, either for dealing with particular classes of problems or for new forms of processing the problem information. Almost one third of the papers is related to EMO applications in a diversity of fields. Eleven papers are devoted to promote the interaction with the related field of Multi-Criterion Decision Making (MCDM).
Supply relations are often governed by so-called relational contracts. These are informal agreements sustained by the value of future cooperation. Although relational contracts persist in practice, research on these types of contract is only emerging in Operations and Supply Chain Management. This book studies a two-firm supply chain, where repeated transactions via well-established supply contracts and continued quality-improvement efforts are governed by a relational contract. We are able to characterize an optimal relational contract, i.e., to develop policies for supplier and buyer that structure investments in quality and flexibility in a way that no other self-enforcing contract generates higher expected joint surplus. A second goal is to compare the performance of different returns mechanisms in the context of relational contracting (quantity flexibility and buy-back contracts). Industry studies motivate the presented model.
Optimization is a rich and thriving mathematical discipline. The theory underlying current computational optimization techniques grows ever more sophisticated. The powerful and elegant language of convex analysis unifies much of this theory. The aim of this book is to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. It can serve as a teaching text, at roughly the level of first year graduate students. While the main body of the text is self-contained, each section concludes with an often extensive set of optional exercises. The new edition adds material on semismooth optimization, as well as several new proofs that will make this book even more self-contained.
Many optimization questions arise in economics and finance; an important example of this is the society's choice of the optimum state of the economy (the social choice problem). Optimization in Economics and Finance extends and improves the usual optimization techniques, in a form that may be adopted for modeling social choice problems. Problems discussed include: when is an optimum reached; when is it unique; relaxation of the conventional convex (or concave) assumptions on an economic model; associated mathematical concepts such as invex and quasimax; multiobjective optimal control models; and related computational methods and programs. These techniques are applied to economic growth models (including small stochastic perturbations), finance and financial investment models (and the interaction between financial and production variables), modeling sustainability over long time horizons, boundary (transversality) conditions, and models with several conflicting objectives. Although the applications are general and illustrative, the models in this book provide examples of possible models for a society's social choice for an allocation that maximizes welfare and utilization of resources. As well as using existing computer programs for optimization of models, a new computer program, named SCOM, is presented in this book for computing social choice models by optimal control.
Portfolio Management with Heuristic Optimization consist of two parts. The first part (Foundations) deals with the foundations of portfolio optimization, its assumptions, approaches and the limitations when "traditional" optimization techniques are to be applied. In addition, the basic concepts of several heuristic optimization techniques are presented along with examples of how to implement them for financial optimization problems. The second part (Applications and Contributions) consists of five chapters, covering different problems in financial optimization: the effects of (linear, proportional and combined) transaction costs together with integer constraints and limitations on the initital endowment to be invested; the diversification in small portfolios; the effect of cardinality constraints on the Markowitz efficient line; the effects (and hidden risks) of Value-at-Risk when used the relevant risk constraint; the problem factor selection for the Arbitrage Pricing Theory.
This book has grown out of lectures and courses given at Linkoeping University, Sweden, over a period of 15 years. It gives an introductory treatment of problems and methods of structural optimization. The three basic classes of geometrical - timization problems of mechanical structures, i. e. , size, shape and topology op- mization, are treated. The focus is on concrete numerical solution methods for d- crete and (?nite element) discretized linear elastic structures. The style is explicit and practical: mathematical proofs are provided when arguments can be kept e- mentary but are otherwise only cited, while implementation details are frequently provided. Moreover, since the text has an emphasis on geometrical design problems, where the design is represented by continuously varying-frequently very many- variables, so-called ?rst order methods are central to the treatment. These methods are based on sensitivity analysis, i. e. , on establishing ?rst order derivatives for - jectives and constraints. The classical ?rst order methods that we emphasize are CONLIN and MMA, which are based on explicit, convex and separable appro- mations. It should be remarked that the classical and frequently used so-called op- mality criteria method is also of this kind. It may also be noted in this context that zero order methods such as response surface methods, surrogate models, neural n- works, genetic algorithms, etc. , essentially apply to different types of problems than the ones treated here and should be presented elsewhere.
From the reviews: "Do you know M.Padberg's Linear Optimization and Extensions? ...] Now here is the continuation of it, discussing the solutions of all its exercises and with detailed analysis of the applications mentioned. Tell your students about it. ...] For those who strive for good exercises and case studies for LP this is an excellent volume." Acta Scientiarum Mathematicarum
The primary aim of this book is to present a coherent introduction to graph theory, suitable as a textbook for advanced undergraduate and beginning graduate students in mathematics and computer science. It provides a systematic treatment of the theory of graphs without sacrificing its intuitive and aesthetic appeal. Commonly used proof techniques are described and illustrated. The book also serves as an introduction to research in graph theory.
This book is concerned with topological and differential properties of multivalued mappings and marginal functions. Beside this applica- tions to the sensitivity analysis of optimization problems, in particular nonlinear programming problems with perturbations, are studied. The elaborated methods are primarily obtained by theories and concepts of two former Soviet Union researchers, Demyanov and Rubinov. Con- sequently, a significant part of the presented results have never been published in English before. Based on the use of directional derivatives as a key tool in studying nonsmooth functions and multifunctions, these results can be considered as a further development of quasidifferential calculus created by Demyanov and Rubinov. In contrast to other research in this field, especially the recent publica- tion by Bonnans and Shapiro, this book analyses properties of marginal functions associated with optimization problems under quite general con- straints defined by means of multivalued mappings. A unified approach to directional differentiability of functions and multifunctions forms the base of the volume.
Computer Science and Operations Research continue to have a synergistic relationship and this book - as a part of the Operations Research and Computer Science Interface Series - sits squarely in the center of the confluence of these two technical research communities. The research presented in the volume is evidence of the expanding frontiers of these two intersecting disciplines and provides researchers and practitioners with new work in the areas of logic programming, stochastic optimization, heuristic search and post-solution analysis for integer programs. The chapter topics span the spectrum of application level. Some of the chapters are highly applied and others represent work in which the application potential is only beginning. In addition, each chapter contains expository material and reviews of the literature designed to enhance the participation of the reader in this expanding interface.
Special tools are required for examining and solving optimization problems. The main tools in the study of local optimization are classical calculus and its modern generalizions which form nonsmooth analysis. The gradient and various kinds of generalized derivatives allow us to ac complish a local approximation of a given function in a neighbourhood of a given point. This kind of approximation is very useful in the study of local extrema. However, local approximation alone cannot help to solve many problems of global optimization, so there is a clear need to develop special global tools for solving these problems. The simplest and most well-known area of global and simultaneously local optimization is convex programming. The fundamental tool in the study of convex optimization problems is the subgradient, which actu ally plays both a local and global role. First, a subgradient of a convex function f at a point x carries out a local approximation of f in a neigh bourhood of x. Second, the subgradient permits the construction of an affine function, which does not exceed f over the entire space and coincides with f at x. This affine function h is called a support func tion. Since f(y) ~ h(y) for ally, the second role is global. In contrast to a local approximation, the function h will be called a global affine support.
Bayesian decision theory is known to provide an effective framework for the practical solution of discrete and nonconvex optimization problems. This book is the first to demonstrate that this framework is also well suited for the exploitation of heuristic methods in the solution of such problems, especially those of large scale for which exact optimization approaches can be prohibitively costly. The book covers all aspects ranging from the formal presentation of the Bayesian Approach, to its extension to the Bayesian Heuristic Strategy, and its utilization within the informal, interactive Dynamic Visualization strategy. The developed framework is applied in forecasting, in neural network optimization, and in a large number of discrete and continuous optimization problems. Specific application areas which are discussed include scheduling and visualization problems in chemical engineering, manufacturing process control, and epidemiology. Computational results and comparisons with a broad range of test examples are presented. The software required for implementation of the Bayesian Heuristic Approach is included. Although some knowledge of mathematical statistics is necessary in order to fathom the theoretical aspects of the development, no specialized mathematical knowledge is required to understand the application of the approach or to utilize the software which is provided. Audience: The book is of interest to both researchers in operations research, systems engineering, and optimization methods, as well as applications specialists concerned with the solution of large scale discrete and/or nonconvex optimization problems in a broad range of engineering and technological fields. It may be used as supplementary material for graduate level courses.
This book is an introduction to the mathematical theory of optimal control of processes governed by ordinary differential eq- tions. It is intended for students and professionals in mathematics and in areas of application who want a broad, yet relatively deep, concise and coherent introduction to the subject and to its relati- ship with applications. In order to accommodate a range of mathema- cal interests and backgrounds among readers, the material is arranged so that the more advanced mathematical sections can be omitted wi- out loss of continuity. For readers primarily interested in appli- tions a recommended minimum course consists of Chapter I, the sections of Chapters II, III, and IV so recommended in the introductory sec tions of those chapters, and all of Chapter V. The introductory sec tion of each chapter should further guide the individual reader toward material that is of interest to him. A reader who has had a good course in advanced calculus should be able to understand the defini tions and statements of the theorems and should be able to follow a substantial portion of the mathematical development. The entire book can be read by someone familiar with the basic aspects of Lebesque integration and functional analysis. For the reader who wishes to find out more about applications we recommend references [2], [13], [33], [35], and [50], of the Bibliography at the end of the book.
This book deals with decision making in environments of significant data un certainty, with particular emphasis on operations and production management applications. For such environments, we suggest the use of the robustness ap proach to decision making, which assumes inadequate knowledge of the decision maker about the random state of nature and develops a decision that hedges against the worst contingency that may arise. The main motivating factors for a decision maker to use the robustness approach are: * It does not ignore uncertainty and takes a proactive step in response to the fact that forecasted values of uncertain parameters will not occur in most environments; * It applies to decisions of unique, non-repetitive nature, which are common in many fast and dynamically changing environments; * It accounts for the risk averse nature of decision makers; and * It recognizes that even though decision environments are fraught with data uncertainties, decisions are evaluated ex post with the realized data. For all of the above reasons, robust decisions are dear to the heart of opera tional decision makers. This book takes a giant first step in presenting decision support tools and solution methods for generating robust decisions in a variety of interesting application environments. Robust Discrete Optimization is a comprehensive mathematical programming framework for robust decision making.
Quadratic programs and affine variational inequalities represent two fundamental, closely-related classes of problems in the t, heories of mathematical programming and variational inequalities, resp- tively. This book develops a unified theory on qualitative aspects of nonconvex quadratic programming and affine variational inequ- ities. The first seven chapters introduce the reader step-by-step to the central issues concerning a quadratic program or an affine variational inequality, such as the solution existence, necessary and sufficient conditions for a point to belong to the solution set, and properties of the solution set. The subsequent two chapters discuss briefly two concrete nlodels (linear fractional vector optimization and the traffic equilibrium problem) whose analysis can benefit a lot from using the results on quadratic programs and affine variational inequalities. There are six chapters devoted to the study of conti- ity and/or differentiability properties of the characteristic maps and functions in quadratic programs and in affine variational inequa- ties where all the components of the problem data are subject to perturbation. Quadratic programs and affine variational inequa- ties under linear perturbations are studied in three other chapters. One special feature of the presentation is that when a certain pr- erty of a characteristic map or function is investigated, we always try first to establish necessary conditions for it to hold, then we go on to study whether the obtained necessary conditions are suf- cient ones. This helps to clarify the structures of the two classes of problems under consideration
The electric power industry is currently undergoing an unprecedented reform. The deregulation of electricity supply industry has introduced new opportunity for competition to reduce the cost and cut the price. It is a tremendous challenge for utilities to maintain an economical and reliable supply of electricity in such an environment. Faced by an increasingly complicated existence, power utilities need efficient tools and aids to ensure that electrical energy of the desired quality can be provided at the lowest cost. The overall objective, both for short-term and long-term operations, is then to find the best compromise between the requirements of security and economy. That is, effective tools are urgently required to solve highly constrained optimisation problems. In recent years, several major modem optimisation techniques have been applied to power systems. A large number of papers and reports have been published. In this respect, it is timely to edit a book on this topic with an aim to report the state of the art development internationally in this area.
This work grew out of several years of research, graduate seminars and talks on the subject. It was motivated by a desire to make the technology accessible to those who most needed it or could most use it. It is meant to be a self-contained introduction, a reference for the techniques, and a guide to the literature for the underlying theory. It contains pointers to fertile areas for future research. It also serves as introductory documentation for a Fortran 90 software package for nonlinear systems and global optimization. The subject of the monograph is deterministic, automatically verified or r- orous methods. In such methods, directed rounding and computational fix- point theory are combined with exhaustive search (branch and bound) te- niques. Completion of such an algorithm with a list of solutions constitutes a rigorous mathematical proof that all of the solutions within the original search region are within the output list. The monograph is appropriate as an introduction to research and technology in the area, as a desk reference, or as a graduate-level course reference. Kno- edge of calculus, linear algebra, and elementary numerical analysis is assumed.
Econometrics as an applied discipline attempts to use information in a most efficient manner, yet the information theory and entropy approach developed by Shannon and others has not played much of a role in applied econometrics. Econometrics of Information and Efficiency bridges the gap. Broadly viewed, information theory analyzes the uncertainty of a given set of data and its probabilistic characteristics. Whereas the economic theory of information emphasizes the value of information to agents in a market, the entropy theory stresses the various aspects of imprecision of data and their interactions with the subjective decision processes. The tools of information theory, such as the maximum entropy principle, mutual information and the minimum discrepancy are useful in several areas of statistical inference, e.g., Bayesian estimation, expected maximum likelihood principle, the fuzzy statistical regression. This volume analyzes the applications of these tools of information theory to the most commonly used models in econometrics. The outstanding features of Econometrics of Information and Efficiency are: A critical survey of the uses of information theory in economics and econometrics; An integration of applied information theory and economic efficiency analysis; The development of a new economic hypothesis relating information theory to economic growth models; New lines of research are emphasized.
Algorithmic Principles of Mathematical Programming investigates the
mathematical structures and principles underlying the design of
efficient algorithms for optimization problems. Recent advances in
algorithmic theory have shown that the traditionally separate areas
of discrete optimization, linear programming, and nonlinear
optimization are closely linked. This book offers a comprehensive
introduction to the whole subject and leads the reader to the
frontiers of current research. The prerequisites to use the book
are very elementary. All the tools from numerical linear algebra
and calculus are fully reviewed and developed. Rather than
attempting to be encyclopedic, the book illustrates the important
basic techniques with typical problems. The focus is on efficient
algorithms with respect to practical usefulness. Algorithmic
complexity theory is presented with the goal of helping the reader
understand the concepts without having to become a theoretical
specialist. Further theory is outlined and supplemented with
pointers to the relevant literature.
In February 2002, the Industrial and Systems Engineering (ISE) De partment at the University of Florida hosted a National Science Founda tion Workshop on Collaboration and Negotiation in Supply Chain Man agement and E Commerce. This workshop focused on characterizing the challenges facing leading edge firms in supply chain management and electronic commerce, and identifying research opportunities for de veloping new technological and decision support capabilities sought by industry. The audience included practitioners in the areas of supply chain management and E Commerce, as well as academic researchers working in these areas. The workshop provided a unique setting that has facilitated ongoing dialog between academic researchers and industry practitioners. This book codifies many of the important themes and issues around which the workshop discussions centered. The editors of this book, all faculty members in the ISE Department at the University of Florida, also served as the workshop's coordinators. In addition to workshop participants, we also invited contributions from leading academics and practitioners who were not able to attend. As a result, the chapters herein represent a collection of research contributions, monographs, and case studies from a variety of disciplines and viewpoints. On the aca demic side alone, chapter authors include faculty members in supply chain and operations management, marketing, industrial engineering, economics, computer science, civil and environmental engineering, and building construction departments.
In recent years global optimization has found applications in many interesting areas of science and technology including molecular biology, chemical equilibrium problems, medical imaging and networks. The collection of papers in this book indicates the diverse applicability of global optimization. Furthermore, various algorithmic, theoretical developments and computational studies are presented. Audience: All researchers and students working in mathematical programming.
The research of Antanas Zilinskas has focused on developing models for global optimization, implementing and investigating the corresponding algorithms, and applying those algorithms to practical problems. This volume, dedicated to Professor Zilinskas on the occasion of his 60th birthday, contains new survey papers in which leading researchers from the field present various models and algorithms for solving global optimization problems.
This book integrates the key concepts of mathematical programming (MP) and constraint programming (CP) into a unified framework that allows them to be generalized and combined. The unification of MP and CP creates optimization methods that have much greater modeling power, increased computational speed, and a sizeable reduction computational coding. This integration along with constraint programming being incorporated into a number of programming languages, brings the field a step closer to being able to simply state a problem and having the computer solve it. |
You may like...
Knowledge Management and Web 3.0 - Next…
Sandeep Kautish, Deepmala Singh, …
Hardcover
R4,228
Discovery Miles 42 280
Robotics for Cell Manipulation and…
Changsheng Dai, Guanqiao Shan, …
Paperback
R2,951
Discovery Miles 29 510
Artificial Intelligence and Data Science…
Mohsen Asadnia, Amir Razmjou, …
Paperback
R2,578
Discovery Miles 25 780
Advanced Computing in Industrial…
Krassimir Georgiev, Michail Todorov, …
Hardcover
R2,724
Discovery Miles 27 240
Stochastic Komatu-loewner Evolutions
Zhen-Qing Chen, Masatoshi Fukushima, …
Hardcover
R2,371
Discovery Miles 23 710
Stochastic Analysis of Mixed Fractional…
Yuliya Mishura, Mounir Zili
Hardcover
|