![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
Potential Function Methods For Approximately Solving Linear Programming Problems breaks new ground in linear programming theory. The book draws on the research developments in three broad areas: linear and integer programming, numerical analysis, and the computational architectures which enable speedy, high-level algorithm design. During the last ten years, a new body of research within the field of optimization research has emerged, which seeks to develop good approximation algorithms for classes of linear programming problems. This work both has roots in fundamental areas of mathematical programming and is also framed in the context of the modern theory of algorithms. The result of this work, in which Daniel Bienstock has been very much involved, has been a family of algorithms with solid theoretical foundations and with growing experimental success. This book will examine these algorithms, starting with some of the very earliest examples, and through the latest theoretical and computational developments.
This introductory textbook adopts a practical and intuitive approach, rather than emphasizing mathematical rigor. Computationally oriented books in this area generally present algorithms alone, and expect readers to perform computations by hand, and are often written in traditional computer languages, such as Basic, Fortran or Pascal. This book, on the other hand, is the first text to use Mathematica to develop a thorough understanding of optimization algorithms, fully exploiting Mathematica's symbolic, numerical and graphic capabilities.
Frontiers of Evolutionary Computation brings together eleven
contributions by international leading researchers discussing what
significant issues still remain unresolved in the field of
Evolutionary Computation (EC). They explore such topics as the role
of building blocks, the balancing of exploration with exploitation,
the modeling of EC algorithms, the connection with optimization
theory and the role of EC as a meta-heuristic method, to name a
few. The articles feature a mixture of informal discussion
interspersed with formal statements, thus providing the reader an
opportunity to observe a wide range of EC problems from the
investigative perspective of world-renowned researchers. These
prominent researchers include: Frontiers of Evolutionary Computation is ideal for researchers and students who want to follow the process of EC problem-solving and for those who want to consider what frontiers still await their exploration. "
Computer-based mathematical modeling - the technique of representing and managing models in machine-readable form - is still in its infancy despite the many powerful mathematical software packages already available which can solve astonishingly complex and large models. On the one hand, using mathematical and logical notation, we can formulate models which cannot be solved by any computer in reasonable time - or which cannot even be solved by any method. On the other hand, we can solve certain classes of much larger models than we can practically handle and manipulate without heavy programming. This is especially true in operations research where it is common to solve models with many thousands of variables. Even today, there are no general modeling tools that accompany the whole modeling process from start to finish, that is to say, from model creation to report writing. This book proposes a framework for computer-based modeling. More precisely, it puts forward a modeling language as a kernel representation for mathematical models. It presents a general specification for modeling tools. The book does not expose any solution methods or algorithms which may be useful in solving models, neither is it a treatise on how to build them. No help is intended here for the modeler by giving practical modeling exercises, although several models will be presented in order to illustrate the framework. Nevertheless, a short introduction to the modeling process is given in order to expound the necessary background for the proposed modeling framework.
4th Party Cyber Logistics For Air Cargo is a technical discussion
for researchers and practitioners to understand the issues, models,
and future directions of air cargo logistics in the cyber era. This
book introduces the many aspects of planning and control of air
cargo logistics processes in an e-Business environment. The authors
approach this subject matter from the perspective of the logistics
service providers. There is tremendous potential of achieving
industry-wide collaboration between agents of the air cargo
industry via an e-Business community platform. At the same time,
there are many intellectually challenging problems regarding the
architecture, ownership, decision support environment, and
knowledge management of such an e-Business platform.
On March 15, 2002 we held a workshop on network interdiction and the more general problem of stochastic mixed integer programming at the University of California, Davis. Jesus De Loera and I co-chaired the event, which included presentations of on-going research and discussion. At the workshop, we decided to produce a volume of timely work on the topics. This volume is the result. Each chapter represents state-of-the-art research and all of them were refereed by leading investigators in the respective fields. Problems - sociated with protecting and attacking computer, transportation, and social networks gain importance as the world becomes more dep- dent on interconnected systems. Optimization models that address the stochastic nature of these problems are an important part of the research agenda. This work relies on recent efforts to provide methods for - dressing stochastic mixed integer programs. The book is organized with interdiction papers first and the stochastic programming papers in the second part. A nice overview of the papers is provided in the Foreward written by Roger Wets.
This is a book on Linear-Fractional Programming (here and in what follows we will refer to it as "LFP"). The field of LFP, largely developed by Hungarian mathematician B. Martos and his associates in the 1960's, is concerned with problems of op timization. LFP problems deal with determining the best possible allo cation of available resources to meet certain specifications. In particular, they may deal with situations where a number of resources, such as people, materials, machines, and land, are available and are to be combined to yield several products. In linear-fractional programming, the goal is to determine a per missible allocation of resources that will maximize or minimize some specific showing, such as profit gained per unit of cost, or cost of unit of product produced, etc. Strictly speaking, linear-fractional programming is a special case of the broader field of Mathematical Programming. LFP deals with that class of mathematical programming problems in which the relations among the variables are linear: the con straint relations (i.e. the restrictions) must be in linear form and the function to be optimized (i.e. the objective function) must be a ratio of two linear functions.
Transportation problems belong to the domains mathematical program ming and operations research. Transportation models are widely applied in various fields. Numerous concrete problems (for example, assignment and distribution problems, maximum-flow problem, etc. ) are formulated as trans portation problems. Some efficient methods have been developed for solving transportation problems of various types. This monograph is devoted to transportation problems with minimax cri teria. The classical (linear) transportation problem was posed several decades ago. In this problem, supply and demand points are given, and it is required to minimize the transportation cost. This statement paved the way for numerous extensions and generalizations. In contrast to the original statement of the problem, we consider a min imax rather than a minimum criterion. In particular, a matrix with the minimal largest element is sought in the class of nonnegative matrices with given sums of row and column elements. In this case, the idea behind the minimax criterion can be interpreted as follows. Suppose that the shipment time from a supply point to a demand point is proportional to the amount to be shipped. Then, the minimax is the minimal time required to transport the total amount. It is a common situation that the decision maker does not know the tariff coefficients. In other situations, they do not have any meaning at all, and neither do nonlinear tariff objective functions. In such cases, the minimax interpretation leads to an effective solution.
Motivation Stochastic Linear Programming with recourse represents one of the more widely applicable models for incorporating uncertainty within in which the SLP optimization models. There are several arenas model is appropriate, and such models have found applications in air line yield management, capacity planning, electric power generation planning, financial planning, logistics, telecommunications network planning, and many more. In some of these applications, modelers represent uncertainty in terms of only a few seenarios and formulate a large scale linear program which is then solved using LP software. However, there are many applications, such as the telecommunications planning problem discussed in this book, where a handful of seenarios do not capture variability well enough to provide a reasonable model of the actual decision-making problem. Problems of this type easily exceed the capabilities of LP software by several orders of magnitude. Their solution requires the use of algorithmic methods that exploit the structure of the SLP model in a manner that will accommodate large scale applications."
This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlierapproaches, based on some degree of heuristics, to the use ofmore and more common systematic methods. Even systematic methods can be developed and applied in a large number of forms so the text collects contributions from across the theory, methods and real-world automotive applications of optimization. Greater fuel economy, significant reductions in permissible emissions, new drivability requirements and the generally increasing complexity of automotive systems are among the criteria that the contributing authors set themselves to meet. In many cases multiple and often conflicting requirements give rise to multi-objective constrained optimization problems which are also considered. Some of these problems fall into the domain of the traditional multi-disciplinary optimization applied to system, sub-system or component design parameters and is performed based on system models; others require applications of optimization directly to experimental systems to determine either optimal calibration or the optimal control trajectory/control law. "Optimization and Optimal Control in Automotive Systems "reflects the state-of-the-art in and promotes a comprehensive approach to optimization in automotive systems by addressing its different facets, by discussing basic methods and showing practical approaches and specific applications of optimization to design and control problems for automotive systems. The book will be of interest both to academic researchers, either studying optimization or who have links with the automotive industry and to industrially-based engineers and automotive designers."
Faced with the challenge of solving the hard optimization problems that abound in the real world, existing methods often encounter great difficulties. Important applications in business, engineering or economics cannot be tackled by the techniques that have formed the predominant focus of academic research throughout the past three decades. Exact and heuristic approaches are dramatically changing our ability to solve problems of practical significance and are extending the frontier of problems that can be handled effectively. This monograph details state-of-the-art optimization methods, both exact and heuristic, for the LOP. The authors employ the LOP to illustrate contemporary optimization technologies as well as how to design successful implementations of exact and heuristic procedures. Therefore, they do not limit the scope of this book to the LOP, but on the contrary, provide the reader with the background and practical strategies in optimization to tackle different combinatorial problems.
This book shows how the Bayesian Approach (BA) improves well known heuristics by randomizing and optimizing their parameters. That is the Bayesian Heuristic Approach (BHA). The ten in-depth examples are designed to teach Operations Research using Internet. Each example is a simple representation of some impor tant family of real-life problems. The accompanying software can be run by remote Internet users. The supporting web-sites include software for Java, C++, and other lan guages. A theoretical setting is described in which one can discuss a Bayesian adaptive choice of heuristics for discrete and global optimization prob lems. The techniques are evaluated in the spirit of the average rather than the worst case analysis. In this context, "heuristics" are understood to be an expert opinion defining how to solve a family of problems of dis crete or global optimization. The term "Bayesian Heuristic Approach" means that one defines a set of heuristics and fixes some prior distribu tion on the results obtained. By applying BHA one is looking for the heuristic that reduces the average deviation from the global optimum. The theoretical discussions serve as an introduction to examples that are the main part of the book. All the examples are interconnected. Dif ferent examples illustrate different points of the general subject. How ever, one can consider each example separately, too."
7 69 6 A DESIGN APPROACH TO PROBLEM DIFFICULTY 71 1 Design and Problem Difficulty 71 2 Three Misconceptions 72 3 Hard Problems Exist 76 4 The 3-Way Decomposition and Its Core 77 The Core of Intra-BB Difficulty: Deception 5 77 6 The Core of Inter-BB Difficulty: Scaling 83 7 The Core of Extra-BB Difficulty: Noise 88 Crosstalk: All Roads Lead to the Core 8 89 9 From Multimodality to Hierarchy 93 10 Summary 100 7 ENSURING BUILDING BLOCK SUPPLY 101 1 Past Work 101 2 Facetwise Supply Model I: One BB 102 Facetwise Supply Model II: Partition Success 103 3 4 Population Size for BB Supply 104 Summary 5 106 8 ENSURING BUILDING BLOCK GROWTH 109 1 The Schema Theorem: BB Growth Bound 109 2 Schema Growth Somewhat More Generally 111 3 Designing for BB Market Share Growth 112 4 Selection Press ure for Early Success 114 5 Designing for Late in the Day 116 The Schema Theorem Works 6 118 A Demonstration of Selection Stall 7 119 Summary 122 8 9 MAKING TIME FOR BUILDING BLOCKS 125 1 Analysis of Selection Alone: Takeover Time 126 2 Drift: When Selection Chooses for No Reason 129 3 Convergence Times with Multiple BBs 132 4 A Time-Scales Derivation of Critical Locus 142 5 A Little Model of Noise-Induced Run Elongation 143 6 From Alleles to Building Blocks 147 7 Summary 148 10 DECIDING WELL 151 1 Why is Decision Making a Problem? 151
Bioinspired computation methods such as evolutionary algorithms and ant colony optimization are being applied successfully to complex engineering problems and to problems from combinatorial optimization, and with this comes the requirement to more fully understand the computational complexity of these search heuristics. This is the first textbook covering the most important results achieved in this area. The authors study the computational complexity of bioinspired computation and show how runtime behavior can be analyzed in a rigorous way using some of the best-known combinatorial optimization problems -- minimum spanning trees, shortest paths, maximum matching, covering and scheduling problems. A feature of the book is the separate treatment of single- and multiobjective problems, the latter a domain where the development of the underlying theory seems to be lagging practical successes. This book will be very valuable for teaching courses on bioinspired computation and combinatorial optimization. Researchers will also benefit as the presentation of the theory covers the most important developments in the field over the last 10 years. Finally, with a focus on well-studied combinatorial optimization problems rather than toy problems, the book will also be very valuable for practitioners in this field.
This special volume is dedicated to Boris M. Mordukhovich, on the occasion of his 60th birthday, and aims to celebrate his fundamental contributionsto variational analysis, generalizeddifferentiationand their applications.A main exampleof these contributions is Boris' recent opus magnus "Variational Analysis and Generalized Differentiation"(vols. I and II) [2,3]. A detailed explanationand careful description of Boris' research and achievements can be found in [1]. Boris' active work and jovial attitude have constantly inspired researchers of several generations, with whom he has generously shared his knowledgeand ent- siasm, along with his well-known warmth and human touch. Variationalanalysis is a rapidlygrowing?eld within pure and applied mathem- ics, with numerous applications to optimization, control theory, economics, en- neering, and other disciplines. Each of the 12 chapters of this volume is a carefully reviewed paper in the ?eld of variational analysis and related topics. Many chapters of this volume were presented at the International Symposium on Variational Analysis and Optimization (ISVAO), held in the Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan, from November 28 to November 30, 2008. The symposium was organized in honour of Boris' 60thbirthday.It broughttogetherBorisandotherresearchersto discusssta- of-the-art results in variational analysis and its applications, with emphasis on op- mization and control. We thank the organizers and participants of the symposium, who made the symposium a highly bene?cial and enjoyable event. We are also grateful to all the authors of this special volume, who have taken the opportunityto celebrate Boris' birthdayand his decadesof contributionsto the area.
This book should be considered as an introduction to a special dass of hierarchical systems of optimal control, where subsystems are described by partial differential equations of various types. Optimization is carried out by means of a two-level scheme, where the center optimizes coordination for the upper level and subsystems find the optimal solutions for independent local problems. The main algorithm is a method of iterative aggregation. The coordinator solves the problern with macrovariables, whose number is less than the number of initial variables. This problern is often very simple. On the lower level, we have the usual optimal control problems of math ematical physics, which are far simpler than the initial statements. Thus, the decomposition (or reduction to problems ofless dimensions) is obtained. The algorithm constructs a sequence of so-called disaggregated solutions that are feasible for the main problern and converge to its optimal solutionunder certain assumptions ( e.g., under strict convexity of the input functions). Thus, we bridge the gap between two disciplines: optimization theory of large-scale systems and mathematical physics. The first motivation was a special model of branch planning, where the final product obeys a preset assortment relation. The ratio coefficient is maximized. Constraints are given in the form of linear inequalities with block diagonal structure of the part of a matrix that corresponds to subsystems. The central coordinator assem bles the final production from the components produced by the subsystems."
Hybrid Optimization focuses on the application of artificial intelligence and operations research techniques to constraint programming for solving combinatorial optimization problems. This book covers the most relevant topics investigated in the last ten years by leading experts in the field, and speculates about future directions for research. This book includes contributions by experts from different but related areas of research including constraint programming, decision theory, operations research, SAT, artificial intelligence, as well as others. These diverse perspectives are actively combined and contrasted in order to evaluate their relative advantages. This volume presents techniques for hybrid modeling, integrated solving strategies including global constraints, decomposition techniques, use of relaxations, and search strategies including tree search local search and metaheuristics. Various applications of the techniques presented as well as supplementary computational tools are also discussed.
This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC's and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors' SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. ... The presentation includes geometric interpretation, linear programming duality, and the simplex method in its primal and dual forms. ... The authors have made an effort to collect ... the most useful recent ideas and algorithms in this area. ... A guide to the existing software is included as well." (Darinka Dentcheva, Mathematical Reviews, Issue 2006 c) "This is a graduate text in optimisation whose main emphasis is in stochastic programming. The book is clearly written. ... This is a good book for providing mathematicians, economists and engineers with an almost complete start up information for working in the field. I heartily welcome its publication. ... It is evident that this book will constitute an obligatory reference source for the specialists of the field." (Carlos Narciso Bouza Herrera, Zentralblatt MATH, Vol. 1104 (6), 2007)
In 2014, winner of "Outstanding Book Award" by The Japan Society for Fuzzy Theory and Intelligent Informatics. Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies. The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins by outlining the history and development of the fuzzy random variable before detailing numerous optimization models and applications that include the design of system controls for a dam.
This volume presents a collection of contributions dedicated to applied problems in the financial and energy sectors that have been formulated and solved in a stochastic optimization framework. The invited authors represent a group of scientists and practitioners, who cooperated in recent years to facilitate the growing penetration of stochastic programming techniques in real-world applications, inducing a significant advance over a large spectrum of complex decision problems. After the recent widespread liberalization of the energy sector in Europe and the unprecedented growth of energy prices in international commodity markets, we have witnessed a significant convergence of strategic decision problems in the energy and financial sectors. This has often resulted in common open issues and has induced a remarkable effort by the industrial and scientific communities to facilitate the adoption of advanced analytical and decision tools. The main concerns of the financial community over the last decade have suddenly penetrated the energy sector inducing a remarkable scientific and practical effort to address previously unforeseeable management problems. Stochastic Optimization Methods in Finance and Energy: New Financial Products and Energy Markets Strategies aims to include in a unified framework for the first time an extensive set of contributions related to real-world applied problems in finance and energy, leading to a common methodological approach and in many cases having similar underlying economic and financial implications. Part 1 of the book presents 6 chapters related to financial applications; Part 2 presents 7 chapters on energy applications; and Part 3 presents 5 chapters devoted to specific theoretical and computational issues.
This handbook covers DEA topics that are extensively used and solidly based. The purpose of the handbook is to (1) describe and elucidate the state of the field and (2), where appropriate, extend the frontier of DEA research. It defines the state-of-the-art of DEA methodology and its uses. This handbook is intended to represent a milestone in the progression of DEA. Written by experts, who are generally major contributors to the topics to be covered, it includes a comprehensive review and discussion of basic DEA models, which, in the present issue extensions to the basic DEA methods, and a collection of DEA applications in the areas of banking, engineering, health care, and services. The handbook's chapters are organized into two categories: (i) basic DEA models, concepts, and their extensions, and (ii) DEA applications. First edition contributors have returned to update their work. The second edition includes updated versions of selected first edition chapters. New chapters have been added on: different approaches with no need for a priori choices of weights (called multipliers) that reflect meaningful trade-offs, construction of static and dynamic DEA technologies, slacks-based model and its extensions, DEA models for DMUs that have internal structures network DEA that can be used for measuring supply chain operations, Selection of DEA applications in the service sector with a focus on building a conceptual framework, research design and interpreting results. "
Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovi, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational algorithms, and multidisciplinary applications. Special features of this volume: - Presents results and approximation methods in various computational settings including: polynomial and orthogonal systems, analytic functions, and differential equations. - Provides a historical overview of approximation theory and many of its subdisciplines; - Contains new results from diverse areas of research spanning mathematics, engineering, and the computational sciences. "Approximation and Computation" is intended for mathematicians and researchers focusing on approximation theory and numerical analysis, but can also be a valuable resource to students and researchers in the computational and applied sciences."
This proceedings volume contains a selection of papers presented at the Fourth International Conference on High Performance Scientific Computing held at the Hanoi Institute of Mathematics, Vietnamese Academy of Science and Technology (VAST), March 2-6, 2009. The conference was organized by the Hanoi Institute of Mathematics, the Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, and its Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, and Ho Chi Minh City University of Technology. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and applications in practice. Subjects covered are mathematical modelling, numerical simulation, methods for optimization and control, parallel computing, software development, applications of scientific computing in physics, mechanics, biology and medicine, engineering, hydrology problems, transport, communication networks, production scheduling, industrial and commercial problems.
This work results from my interest in the field of vector optimiza tion. I stumbled first upon this subject in 1982 during my six months visit to the Istituto di Elaborazione della Informazione in Pisa, Italy, supported by a fellowship of the (Italian) Consiglio Nationale delle Richerche. I was attracted then by a gap between vector optimiza tion used to serve as a formal model for multiple objective decision problems and the decision problems themselves, the gap nonexis tent in scalar optimization. Roughly speaking, vector optimization provides methods for ranking decisions according to a partial order whereas decision making requires a linear ordering of decisions. The book deals with vector optimization. However, vector opti mization is considered here not only as a topic of research in itself but also as a basic tool for decision making. In consequence, all results presented here are aimed at exploiting and understanding the structure of elements (decisions) framed by a vector optimiza tion problem with the underlying assumption that the results should be interpretable in terms and applicable in the context of decision making. Computational tractability of results is therefore of special concern throughout this book. A unified framework for presentation is offered by the Cone Sep aration Technique (CST) founded on the notion of cone separation. |
You may like...
Smart Electromechanical Systems - Group…
Andrey E. Gorodetskiy, Irina L. Tarasova
Hardcover
R2,695
Discovery Miles 26 950
Wording Robotics - Discourses and…
Jean-Paul Laumond, Emmanuelle Danblon, …
Hardcover
R4,011
Discovery Miles 40 110
|