![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
This book, based on a selection of talks given at a dedicated meeting in Cortona, Italy, in June 2013, shows the high degree of interaction between a number of fields related to applied sciences. Applied sciences consider situations in which the evolution of a given system over time is observed, and the related models can be formulated in terms of evolution equations (EEs). These equations have been studied intensively in theoretical research and are the source of an enormous number of applications. In this volume, particular attention is given to direct, inverse and control problems for EEs. The book provides an updated overview of the field, revealing its richness and vitality.
Providing readers with a detailed examination of resilient controls in risk-averse decision, this monograph is aimed toward researchers and graduate students in applied mathematics and electrical engineering with a systems-theoretic concentration. This work contains a timely and responsive evaluation of reforms on the use of asymmetry or skewness pertaining to the restrictive family of quadratic costs that have been appeared in various scholarly forums. Additionally, the book includes a discussion of the current and ongoing efforts in the usage of risk, dynamic game decision optimization and disturbance mitigation techniques with output feedback measurements tailored toward the worst-case scenarios. This work encompasses some of the current changes across uncertainty quantification, stochastic control communities, and the creative efforts that are being made to increase the understanding of resilient controls. Specific considerations are made in this book for the application of decision theory to resilient controls of the linear-quadratic class of stochastic dynamical systems. Each of these topics are examined explicitly in several chapters. This monograph also puts forward initiatives to reform both control decisions with risk consequences and correct-by-design paradigms for performance reliability associated with the class of stochastic linear dynamical systems with integral quadratic costs and subject to network delays, control and communication constraints.
Linear programming (LP), modeling, and optimization are very much the fundamentals of OR, and no academic program is complete without them. No matter how highly developed one 's LP skills are, however, if a fine appreciation for modeling isn t developed to make the best use of those skills, then the truly best solutions are often not realized, and efforts go wasted. Katta Murty studied LP with George Dantzig, the father of linear programming, and has written the graduate-level solution to that problem. While maintaining the rigorous LP instruction required, Murty's new book is unique in his focus on developing modeling skills to support valid decision making for complex real world problems. He describes the approach as 'intelligent modeling and decision making' to emphasize the importance of employing the best expression of actual problems and then applying the most computationally effective and efficient solution technique for that model.
While mathematically sophisticated methods can be used to better understand and improve processes, the nonlinear nature of food processing models can make their dynamic optimization a daunting task. With contributions from a virtual who s who in the food processing industry, Optimization in Food Engineering evaluates the potential uses and limitations of optimization techniques for food processing, including classical methods, artificial intelligence-genetic algorithms, multi-objective optimization procedures, and computational fluid dynamics. The book begins by delineating the fundamentals and methods for analytical and numerical procedures. It then covers optimization techniques and how they specifically apply to food processing. The final section digs deep into fundamental food processes and provides detailed explanation and examples from the most experienced and published authors in the field. This includes a range of processes from optimization strategies for improving the performance of batch reactors to the optimization of conventional thermal processing, microwave heating, freeze drying, spray drying, and refrigeration systems, to structural optimization techniques for developing beverage containers, optimization approaches for impingement processing, and optimal operational planning methodologies. Each chapter presents the required parameters for the given process with the optimization procedure to apply. An increasing part of the food processor s job is to optimize systems to squeeze more dollars out of overhead to offset rising utility and transportation costs. Logically combining optimization techniques from many sources into a single volume focused on food production processes, this book provides real solutions to increases in energy, healthcare, and product liability costs that impact the bottom line in food production.
This textbook approaches optimization from a multi-aspect, multi-criteria perspective. By using a Multiple Criteria Decision Making (MCDM) approach, it avoids the limits and oversimplifications that can come with optimization models with one criterion. The book is presented in a concise form, addressing how to solve decision problems in sequences of intelligence, modelling, choice and review phases, often iterated, to identify the most preferred decision variant. The approach taken is human-centric, with the user taking the final decision is a sole and sovereign actor in the decision making process. To ensure generality, no assumption about the Decision Maker preferences or behavior is made. The presentation of these concepts is illustrated by numerous examples, figures, and problems to be solved with the help of downloadable spreadsheets. This electronic companion contains models of problems to be solved built in Excel spreadsheet files. Optimization models are too often oversimplifications of decision problems met in practice. For instance, modeling company performance by an optimization model in which the criterion function is short-term profit to be maximized, does not fully reflect the essence of business management. The company's managing staff is accountable not only for operational decisions, but also for actions which shall result in the company ability to generate a decent profit in the future. This calls for management decisions and actions which ensure short-term profitability, but also maintaining long-term relations with clients, introducing innovative products, financing long-term investments, etc. Each of those additional, though indispensable actions and their effects can be modeled separately, case by case, by an optimization model with a criterion function adequately selected. However, in each case the same set of constraints represents the range of company admissible actions. The aim and the scope of this textbook is to present methodologies and methods enabling modeling of such actions jointly.
This book presents the latest researches on hypersonic steady glide dynamics and guidance, including the concept of steady glide reentry trajectory and the stability of its regular perturbation solutions, trajectory damping control technique for hypersonic glide reentry, singular perturbation guidance of hypersonic glide reentry, trajectory optimization based on steady glide, linear pseudospectral generalized nominal effort miss distance guidance, analytical entry guidance and trajectory-shaping guidance with final speed and load factor constraints. They can be used to solve many new difficult problems in entry guidance. And many practical engineering cases are provided for the readers for better understanding. Researchers and students in the fields of flight vehicle design or flight dynamics, guidance and control could use the book as valuable reference.
Customer-Oriented Optimization in Public Transportation develops models, results and algorithms for optimizing public transportation from a customer-oriented point of view. The methods used are based on graph-theoretic approaches and integer programming. The specific topics are all motivated by real-world examples which occurred in practical projects. An appendix summarizes some of the basics of optimization needed to interpret the material in the book. In detail, the topics the book covers in its three parts are as follows: Stop location - Does it make sense to open new stations along existing bus or railway lines? If yes, in which locations? The problem is modeled as a continuous covering problem. To solve it, the author develops a finite dominating set and shows that efficient methods are possible if the special structure of the covering matrix is used; Delay management - Should a train wait for delayed feeder trains or should it depart in time?
Before the appearance of broadband links and wireless systems, networks have been used to connect people in new ways. Now, the modern world is connected through large-scale, computational networked systems such as the Internet. Because of the ever-advancing technology of networking, efficient algorithms have become increasingly necessary to solve some of the problems developing in this area. "Mathematical Aspects of Network Routing Optimization" focuses on computational issues arisingfrom the process of optimizing network routes, such as quality of the resulting links and their reliability. Algorithms are a cornerstone for the understanding of the protocols underlying multicast routing. The main objectivein the text is to deriveefficient algorithms, with or without guarantee of approximation. Notes have been provided for basic topics such as graph theory and linear programming to assist those who are not fully acquainted with the mathematical topics presented throughout the book. "Mathematical Aspects of Network Routing Optimization" provides a thorough introduction to the subject of algorithms for network routing, and focuses especially on multicast and wireless ad hoc systems. This book is designed for graduate students, researchers, and professionals interested in understanding the algorithmic and mathematical ideas behind routing in computer networks. It is suitable for advanced undergraduate students, graduate students, and researchers in the area of network algorithms."
This research monograph summarizes a line of research that maps certain classical problems of discrete mathematics and operations research - such as the Hamiltonian Cycle and the Travelling Salesman Problems - into convex domains where continuum analysis can be carried out. Arguably, the inherent difficulty of these, now classical, problems stems precisely from the discrete nature of domains in which these problems are posed. The convexification of domains underpinning these results is achieved by assigning probabilistic interpretation to key elements of the original deterministic problems. In particular, the approaches summarized here build on a technique that embeds Hamiltonian Cycle and Travelling Salesman Problems in a structured singularly perturbed Markov decision process. The unifying idea is to interpret subgraphs traced out by deterministic policies (including Hamiltonian cycles, if any) as extreme points of a convex polyhedron in a space filled with randomized policies. The above innovative approach has now evolved to the point where there are many, both theoretical and algorithmic, results that exploit the nexus between graph theoretic structures and both probabilistic and algebraic entities of related Markov chains. The latter include moments of first return times, limiting frequencies of visits to nodes, or the spectra of certain matrices traditionally associated with the analysis of Markov chains. However, these results and algorithms are dispersed over many research papers appearing in journals catering to disparate audiences. As a result, the published manuscripts are often written in a very terse manner and use disparate notation, thereby making it difficult for new researchers to make use of the many reported advances. Hence the main purpose of this book is to present a concise and yet easily accessible synthesis of the majority of the theoretical and algorithmic results obtained so far. In addition, the book discusses numerous open questions and problems that arise from this body of work and which are yet to be fully solved. The approach casts the Hamiltonian Cycle Problem in a mathematical framework that permits analytical concepts and techniques, not used hitherto in this context, to be brought to bear to further clarify both the underlying difficulty of NP-completeness of this problem and the relative exceptionality of truly difficult instances. Finally, the material is arranged in such a manner that the introductory chapters require very little mathematical background and discuss instances of graphs with interesting structures that motivated a lot of the research in this topic. More difficult results are introduced later and are illustrated with numerous examples.
Effective decision-making while trading off the constraints and conflicting multiple objectives under rapid technological developments, massive generation of data, and extreme volatility is of paramount importance to organizations to win over the time-based competition today. While agility is a crucial issue, the firms have been increasingly relying on evidence-based decision-making through intelligent decision support systems driven by computational intelligence and automation to achieve a competitive advantage. The decisions are no longer confined to a specific functional area. Instead, business organizations today find actionable insight for formulating future courses of action by integrating multiple objectives and perspectives. Therefore, multi-objective decision-making plays a critical role in businesses and industries. In this regard, the importance of Operations Research (OR) models and their applications enables the firms to derive optimum solutions subject to various constraints and/or objectives while considering multiple functional areas of the organizations together. Hence, researchers and practitioners have extensively applied OR models to solve various organizational issues related to manufacturing, service, supply chain and logistics management, human resource management, finance, and market analysis, among others. Further, OR models driven by AI have been enabled to provide intelligent decision-support frameworks for achieving sustainable development goals. The present issue provides a unique platform to showcase the contributions of the leading international experts on production systems and business from academia, industry, and government to discuss the issues in intelligent manufacturing, operations management, financial management, supply chain management, and Industry 4.0 in the Artificial Intelligence era. Some of the general (but not specific) scopes of this proceeding entail OR models such as Optimization and Control, Combinatorial Optimization, Queuing Theory, Resource Allocation Models, Linear and Nonlinear Programming Models, Multi-objective and multi-attribute Decision Models, Statistical Quality Control along with AI, Bayesian Data Analysis, Machine Learning and Econometrics and their applications vis-à -vis AI & Data-driven Production Management, Marketing and Retail Management, Financial Management, Human Resource Management, Operations Management, Smart Manufacturing & Industry 4.0, Supply Chain and Logistics Management, Digital Supply Network, Healthcare Administration, Inventory Management, consumer behavior, security analysis, and portfolio management and sustainability.  The present issue shall be of interest to the faculty members, students, and scholars of various engineering and social science institutions and universities, along with the practitioners and policymakers of different industries and organizations.
The present volume is a collective monograph devoted to applications of the optimal design theory in optimization and statistics. The chapters re?ect the topics discussed at the workshop "W-Optimum Design and Related Statistical Issues" that took place in Juan-les-Pins, France, in May 2005. The title of the workshop was chosen as a light-hearted celebration of the work of Henry Wynn. It was supported by the Laboratoire I3S (CNRS/Universit e de Nice, Sophia Antipolis), to which Henry is a frequent visitor. The topics covered partly re?ect the wide spectrum of Henry's research - terests. Algorithms for constructing optimal designs are discussed in Chap. 1, where Henry's contribution to the ?eld is acknowledged. Steepest-ascent - gorithms used to construct optimal designs are very much related to general gradientalgorithmsforconvexoptimization. Inthelasttenyears, asigni?cant part of Henry's research was devoted to the study of the asymptotic prop- ties of such algorithms. This topic is covered by Chaps. 2 and 3. The work by Alessandra Giovagnoli concentrates on the use of majorization and stoch- tic ordering, and Chap. 4 is a hopeful renewal of their collaboration. One of Henry's major recent interests is what is now called algebraic statistics, the application of computational commutative algebra to statistics, and he was partly responsible for introducing the experimental design sub-area, reviewed in Chap. 5. One other sub-area is the application to Bayesian networks and Chap. 6 covers this, with Chap. 7 being strongly related."
"Addresses the key topic in combinatorial synthesis--how to optimize the quality of a combinatorial library--by determining the usefulness of synthesized compunds, the reliability of biological assay results, and analyzing acadmic and industrial applications, real-world examples, and case studies of successful and unsuccessful technologies."
This book introduces the theory and applications of uncertain optimal control, and establishes two types of models including expected value uncertain optimal control and optimistic value uncertain optimal control. These models, which have continuous-time forms and discrete-time forms, make use of dynamic programming. The uncertain optimal control theory relates to equations of optimality, uncertain bang-bang optimal control, optimal control with switched uncertain system, and optimal control for uncertain system with time-delay. Uncertain optimal control has applications in portfolio selection, engineering, and games. The book is a useful resource for researchers, engineers, and students in the fields of mathematics, cybernetics, operations research, industrial engineering, artificial intelligence, economics, and management science.
Handbook of Optimization in Medicine is devoted to examining the dramatic increase in the application of effective optimization techniques to the delivery of health care. The articles, written by experts, focus on models and algorithms that have led to more efficient and sophisticated treatments of patients. Topics covered include: optimization in medical imaging, classification and data mining with medical applications, treatment of epilepsy and other brain disorders, treatment of head-and-neck, prostate, and other cancers using conventional conformal and intensity-modulated radiation therapy as well as proton therapy, treatment selection for breast cancer based on new classification schemes, optimization for the genome project, optimal timing of organ transplants.
Many decision problems in Operations Research are defined on temporal networks, that is, workflows of time-consuming tasks whose processing order is constrained by precedence relations. For example, temporal networks are used to model projects, computer applications, digital circuits and production processes. Optimization problems arise in temporal networks when a decision maker wishes to determine a temporal arrangement of the tasks and/or a resource assignment that optimizes some network characteristic (e.g. the time required to complete all tasks). The parameters of these optimization problems (e.g. the task durations) are typically unknown at the time the decision problem arises. This monograph investigates solution techniques for optimization problems in temporal networks that explicitly account for this parameter uncertainty. We study several formulations, each of which requires different information about the uncertain problem parameters.
The book presents a set of novel, efficient and systematic concurrent multiscale optimization methods by considering the distribution of the material in macro-scale and the unit-cell configuration design in micro-scale simultaneously. Different from the traditional optimization method that is performed in a single scale, the proposed methods could generate a great deal of improvements in structural performance through the multiscale structure-material concurrent optimum design.The proposed theory and methods are related to statics, dynamics, thermoelastics and the coupling of different physical fields. Therefore, it provides a comprehensive designing scheme when multiple factors are taken into account. For example, the designing scheme can have a great significance on enhancing the structural performances under coupled multi-physical fields, such as load bearing capacity, vibration resistance ability, and safety under thermal stress and so on.Several numerical examples are highlighted in this unique volume based on practical engineering applications. The examples collectively demonstrate drastically improved designs featuring excellent unit-cell configuration and highly regular macroscale material distribution in a variety of industrial applications.
Proportional Optimization and Fairness is a long-needed attempt to reconcile optimization with apportionment in just-in-time (JIT) sequences and find the common ground in solving problems ranging from sequencing mixed-model just-in-time assembly lines through just-in-time batch production, balancing workloads in event graphs to bandwidth allocation internet gateways and resource allocation in computer operating systems. The book argues that apportionment theory and optimization based on deviation functions provide natural benchmarks for a process, and then looks at the recent research and developments in the field. Individual chapters look at the theory of apportionment and just-in-time sequences; minimization of just-in-time sequence deviation; optimality of cyclic sequences and the oneness; bottleneck minimization; competition-free instances, Fraenkel s Conjecture, and optimal admission sequences; response time variability; applications to the Liu-Layland Problem and pinwheel scheduling; temporal capacity constraints and supply chain balancing; fair queuing and stride scheduling; and smoothing and batching.
Optimal Control and Optimization of Stochastic Supply Chain Systems examines its subject the context of the presence of a variety of uncertainties. Numerous examples with intuitive illustrations and tables are provided, to demonstrate the structural characteristics of the optimal control policies in various stochastic supply chains and to show how to make use of these characteristics to construct easy-to-operate sub-optimal policies. In Part I, a general introduction to stochastic supply chain systems is provided. Analytical models for various stochastic supply chain systems are formulated and analysed in Part II. In Part III the structural knowledge of the optimal control policies obtained in Part II is utilized to construct easy-to-operate sub-optimal control policies for various stochastic supply chain systems accordingly. Finally, Part IV discusses the optimisation of threshold-type control policies and their robustness. A key feature of the book is its tying together of the complex analytical models produced by the requirements of operational practice, and the simple solutions needed for implementation. The analytical models and theoretical analysis propounded in this monograph will be of benefit to academic researchers and graduate students looking at logistics and supply chain management from standpoints in operations research or industrial, manufacturing, or control engineering. The practical tools and solutions and the qualitative insights into the ideas underlying functional supply chain systems will be of similar use to readers from more industrially-based backgrounds.
Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
Evolutionary algorithms are very powerful techniques used to find solutions to real-world search and optimization problems. Many of these problems have multiple objectives, which leads to the need to obtain a set of optimal solutions, known as effective solutions. It has been found that using evolutionary algorithms is a highly effective way of finding multiple effective solutions in a single simulation run.
'Deb's book is complete, eminently readable, and the coverage is scholarly and thorough. It is my pleasure and duty to urge you to buy this book, read it, use it and enjoy it' - David E. Goldberg, University of Illinois at Urbana-Champaign, USA
This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts.
Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aim to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. Concepts of Combinatorial Optimization, is divided into three parts: - On the complexity of combinatorial optimization problems, presenting basics about worst-case and randomized complexity; - Classical solution methods, presenting the two most-known methods for solving hard combinatorial optimization problems, that are Branch-and-Bound and Dynamic Programming; - Elements from mathematical programming, presenting fundamentals from mathematical programming based methods that are in the heart of Operations Research since the origins of this field.
Reactive Search and Intelligent Optimization is an excellent introduction to the main principles of reactive search, as well as an attempt to develop some fresh intuition for the approaches. The book looks at different optimization possibilities with an emphasis on opportunities for learning and self-tuning strategies. While focusing more on methods than on problems, problems are introduced wherever they help make the discussion more concrete, or when a specific problem has been widely studied by reactive search and intelligent optimization heuristics. Individual chapters cover reacting on the neighborhood; reacting on the annealing schedule; reactive prohibitions; model-based search; reacting on the objective function; relationships between reactive search and reinforcement learning; and much more. Each chapter is structured to show basic issues and algorithms; the parameters critical for the success of the different methods discussed; and opportunities for the automated tuning of these parameters. |
You may like...
The South Precinct of Dutchess County…
Pamela Ricciardi Paschke
Hardcover
R1,186
Discovery Miles 11 860
|