![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization > General
Computationally-intensive tools play an increasingly important role in financial decisions. Many financial problems-ranging from asset allocation to risk management and from option pricing to model calibration-can be efficiently handled using modern computational techniques. Numerical Methods and Optimization in Finance presents such computational techniques, with an emphasis on simulation and optimization, particularly so-called heuristics. This book treats quantitative analysis as an essentially computational discipline in which applications are put into software form and tested empirically. This revised edition includes two new chapters, a self-contained tutorial on implementing and using heuristics, and an explanation of software used for testing portfolio-selection models. Postgraduate students, researchers in programs on quantitative and computational finance, and practitioners in banks and other financial companies can benefit from this second edition of Numerical Methods and Optimization in Finance.
A pioneering look at the fundamental role of logic in optimization and constraint satisfaction While recent efforts to combine optimization and constraint satisfaction have received considerable attention, little has been said about using logic in optimization as the key to unifying the two fields. Logic-Based Methods for Optimization develops for the first time a comprehensive conceptual framework for integrating optimization and constraint satisfaction, then goes a step further and shows how extending logical inference to optimization allows for more powerful as well as flexible modeling and solution techniques. Designed to be easily accessible to industry professionals and academics in both operations research and artificial intelligence, the book provides a wealth of examples as well as elegant techniques and modeling frameworks ready for implementation. Timely, original, and thought-provoking, Logic-Based Methods for Optimization:
This book covers the issues related to optimization of engineering and management problems using soft computing techniques with an industrial outlook. It covers a broad area related to real life complex decision making problems using a heuristics approach. It also explores a wide perspective and future directions in industrial engineering research on a global platform/scenario. The book highlights the concept of optimization, presents various soft computing techniques, offers sample problems, and discusses related software programs complete with illustrations. Features Explains the concept of optimization and relevance to soft computing techniques towards optimal solution in engineering and management Presents various soft computing techniques Offers problems and their optimization using various soft computing techniques Discusses related software programs, with illustrations Provides a step-by-step tutorial on how to handle relevant software for obtaining the optimal solution to various engineering problems
Unifies the field of optimization with a few geometric principles. The number of books that can legitimately be called classics in their fields is small indeed, but David Luenberger's Optimization by Vector Space Methods certainly qualifies. Not only does Luenberger clearly demonstrate that a large segment of the field of optimization can be effectively unified by a few geometric principles of linear vector space theory, but his methods have found applications quite removed from the engineering problems to which they were first applied. Nearly 30 years after its initial publication, this book is still among the most frequently cited sources in books and articles on financial optimization. The book uses functional analysis —the study of linear vector spaces —to impose simple, intuitive interpretations on complex, infinite-dimensional problems. The early chapters offer an introduction to functional analysis, with applications to optimization. Topics addressed include linear space, Hilbert space, least-squares estimation, dual spaces, and linear operators and adjoints. Later chapters deal explicitly with optimization theory, discussing
End-of-chapter problems constitute a major component of this book and come in two basic varieties. The first consists of miscellaneous mathematical problems and proofs that extend and supplement the theoretical material in the text; the second, optimization problems, illustrates further areas of application and helps the reader formulate and solve practical problems. For professionals and graduate students in engineering, mathematics, operations research, economics, and business and finance, Optimization by Vector Space Methods is an indispensable source of problem-solving tools.
This book describes the development of innovative non-centralized optimization-based control schemes to solve economic dispatch problems of large-scale energy systems. Particularly, it focuses on communication and cooperation processes of local controllers, which are integral parts of such schemes. The economic dispatch problem, which is formulated as a convex optimization problem with edge-based coupling constraints, is solved by using methodologies in distributed optimization over time-varying networks, together with distributed model predictive control, and system partitioning techniques. At first, the book describes two distributed optimization methods, which are iterative and require the local controllers to exchange information with each other at each iteration. In turn, it shows that the sequence produced by these methods converges to an optimal solution when some conditions, which include how the controllers must communicate and cooperate, are satisfied. Further, it proposes an information exchange protocol to cope with possible communication link failures. Finally, the proposed distributed optimization methods are extended to the cases with random communication networks and asynchronous updates. Overall, this book presents a set of improved predictive control and distributed optimization methods, together with a rigorous mathematical analysis of each proposed algorithms. It describes a comprehensive approach to cope with communication and cooperation issues of non-centralized control schemes and show how the improved schemes can be successfully applied to solve the economic dispatch problems of large-scale energy systems.
This volume features recent development and techniques in evolution equations by renown experts in the field. Each contribution emphasizes the relevance and depth of this important area of mathematics and its expanding reach into the physical, biological, social, and computational sciences as well as into engineering and technology. The reader will find an accessible summary of a wide range of active research topics, along with exciting new results. Topics include: Impulsive implicit Caputo fractional q-difference equations in finite and infinite dimensional Banach spaces; optimal control of averaged state of a population dynamic model; structural stability of nonlinear elliptic p(u)-Laplacian problem with Robin-type boundary condition; exponential dichotomy and partial neutral functional differential equations, stable and center-stable manifolds of admissible class; global attractor in Alpha-norm for some partial functional differential equations of neutral and retarded type; and more. Researchers in mathematical sciences, biosciences, computational sciences and related fields, will benefit from the rich and useful resources provided. Upper undergraduate and graduate students may be inspired to contribute to this active and stimulating field.
This book is devoted to the development of optimal control theory for finite dimensional systems governed by deterministic and stochastic differential equations driven by vector measures. The book deals with a broad class of controls, including regular controls (vector-valued measurable functions), relaxed controls (measure-valued functions) and controls determined by vector measures, where both fully and partially observed control problems are considered. In the past few decades, there have been remarkable advances in the field of systems and control theory thanks to the unprecedented interaction between mathematics and the physical and engineering sciences. Recently, optimal control theory for dynamic systems driven by vector measures has attracted increasing interest. This book presents this theory for dynamic systems governed by both ordinary and stochastic differential equations, including extensive results on the existence of optimal controls and necessary conditions for optimality. Computational algorithms are developed based on the optimality conditions, with numerical results presented to demonstrate the applicability of the theoretical results developed in the book. This book will be of interest to researchers in optimal control or applied functional analysis interested in applications of vector measures to control theory, stochastic systems driven by vector measures, and related topics. In particular, this self-contained account can be a starting point for further advances in the theory and applications of dynamic systems driven and controlled by vector measures.
Seeking sparse solutions of underdetermined linear systems is required in many areas of engineering and science such as signal and image processing. The efficient sparse representation becomes central in various big or high-dimensional data processing, yielding fruitful theoretical and realistic results in these fields. The mathematical optimization plays a fundamentally important role in the development of these results and acts as the mainstream numerical algorithms for the sparsity-seeking problems arising from big-data processing, compressed sensing, statistical learning, computer vision, and so on. This has attracted the interest of many researchers at the interface of engineering, mathematics and computer science. Sparse Optimization Theory and Methods presents the state of the art in theory and algorithms for signal recovery under the sparsity assumption. The up-to-date uniqueness conditions for the sparsest solution of underdertemined linear systems are described. The results for sparse signal recovery under the matrix property called range space property (RSP) are introduced, which is a deep and mild condition for the sparse signal to be recovered by convex optimization methods. This framework is generalized to 1-bit compressed sensing, leading to a novel sign recovery theory in this area. Two efficient sparsity-seeking algorithms, reweighted l1-minimization in primal space and the algorithm based on complementary slackness property, are presented. The theoretical efficiency of these algorithms is rigorously analysed in this book. Under the RSP assumption, the author also provides a novel and unified stability analysis for several popular optimization methods for sparse signal recovery, including l1-mininization, Dantzig selector and LASSO. This book incorporates recent development and the author's latest research in the field that have not appeared in other books.
This book, the first on these topics, addresses the problem of finding an ellipsoid to represent a large set of points in high-dimensional space, which has applications in computational geometry, data representations, and optimal design in statistics. The book covers the formulation of this and related problems, theoretical properties of their optimal solutions, and algorithms for their solution. Due to the high dimensionality of these problems, first-order methods that require minimal computational work at each iteration are attractive. While algorithms of this kind have been discovered and rediscovered over the past fifty years, their computational complexities and convergence rates have only recently been investigated. The optimization problems in the book have the entries of a symmetric matrix as their variables, so the author's treatment also gives an introduction to recent work in matrix optimization.* Provides historical perspective on the problems studied by optimizers, statisticians, and geometric functional analysts.* Demonstrates the huge computational savings possible by exploiting simple updates for the determinant and the inverse after a rank-one update.* Highlights the difficulties in algorithms when related problems are studied that do not allow simple updates at each iteration.* Gives rigorous analyses of the proposed algorithms, MATLAB codes, and computational results.
In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems are defined in a simple and elegant manner by using only the two basic (and relatively simple) notions of Newton polyhedron and non-degeneracy conditions associated with a given polynomial optimization problem. These conditions are well known in singularity theory, however, they are rarely considered within the optimization community.Explanations focus on critical points and tangencies of polynomial optimization, Hoelderian error bounds for polynomial systems, Frank-Wolfe-type theorem for polynomial programs and well-posedness in polynomial optimization. It then goes on to look at optimization for the different types of polynomials. Through this text graduate students, PhD students and researchers of mathematics will be provided with the knowledge necessary to use semi-algebraic geometry in optimization.
This superb new book is one of the first publications in recent years to provide a broad overview of this interdisciplinary field. Most of the book is written in a self contained manner, assuming only a general knowledge of statistical mechanics and basic probabilty theory . It provides the reader with a sound introduction to the field and to the analytical techniques necessary to follow its most recent developments
This monograph deals with a general class of solution approaches in deterministic global optimization, namely the geometric branch-and-bound methods which are popular algorithms, for instance, in Lipschitzian optimization, d.c. programming, and interval analysis.It alsointroduces a new concept for the rate of convergence and analyzes several bounding operations reported in the literature, from the theoretical as well as from the empirical point of view. Furthermore, extensions of the prototype algorithm for multicriteria global optimization problems as well as mixed combinatorial optimization problems are considered. Numerical examples based on facility location problems support the theory. Applications of geometric branch-and-bound methods, namely the circle detection problem in image processing, the integrated scheduling and location makespan problem, and the median line location problem in the three-dimensional space are also presented. The book is intended for both researchers and students in the areas of mathematics, operations research, engineering, and computer science.
Computational optimization methods have matured over the last few years due to extensive research by applied mathematicians and engineers. These methods have been applied to many practical applications. Several general-purpose optimization programs and programs for specific engineering applications have become available to solve particular optimization problems.Written by leading researchers in the field of optimization, this highly readable book covers state-of-the-art computational algorithms as well as applications of optimization to structural and mechanical systems. Formulations of the problems and numerical solutions are presented, and topics requiring further research are also suggested.
This proceedings volume convenes selected, peer-reviewed papers presented at the 3rd International Conference on Mathematics and its Applications in Science and Engineering - ICMASE 2022, which was held on July 4-7, 2022 by the Technical University of Civil Engineering of Bucharest, Romania. Works in this volume cover new developments in applications of mathematics in science and engineering, with emphasis on mathematical and computational modeling of real-world problems. Topics range from the use of differential equations to model mechanical structures to the employ of number theory in the development of information security and cryptography. Educational issues specific to the acquisition of mathematical competencies by engineering and science students at all university levels are also touched on. Researchers and university students are the natural audiences for this book, which can be equally appealing to practitioners seeking up-to-date techniques in mathematical applications to different contexts and disciplines.
This is the second of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses more advanced topics than volume one, and is largely not a prerequisite for volume three. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 49 examples, 110 exercises, 66 algorithms, 24 interactive JavaScript programs, 77 references to software programs and 1 case study. Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in LAPACK, GSLIB and MATLAB. This book could be used for a second course in numerical methods, for either upper level undergraduates or first year graduate students. Parts of the text could be used for specialized courses, such as nonlinear optimization or iterative linear algebra.
Problems in network optimization arise in all areas of technology and industrial management. The topic of network flows has applications in diverse fields such as chemistry, engineering, management science, scheduling and transportation, to name a few.
Unique in that it focuses on formulation and case studies rather
than solutions procedures covering applications for pure,
generalized and integer networks, equivalent formulations plus
successful techniques of network models. Every chapter contains a
simple model which is expanded to handle more complicated
developments, a synopsis of existing applications, one or more case
studies, at least 20 exercises and invaluable references.
This book presents a selection of advanced case studies that cover a substantial range of issues and real-world challenges and applications in space engineering. Vital mathematical modeling, optimization methodologies and numerical solution aspects of each application case study are presented in detail, with discussions of a range of advanced model development and solution techniques and tools. Space engineering challenges are discussed in the following contexts: *Advanced Space Vehicle Design *Computation of Optimal Low Thrust Transfers *Indirect Optimization of Spacecraft Trajectories *Resource-Constrained Scheduling, *Packing Problems in Space *Design of Complex Interplanetary Trajectories *Satellite Constellation Image Acquisition *Re-entry Test Vehicle Configuration Selection *Collision Risk Assessment on Perturbed Orbits *Optimal Robust Design of Hybrid Rocket Engines *Nonlinear Regression Analysis in Space Engineering *Regression-Based Sensitivity Analysis and Robust Design *Low-Thrust Multi-Revolution Orbit Transfers *Modeling and Optimization of Balance Layout Problems *Pilot-Induced Oscillations Alleviation *Modeling and Optimization of Hybrid Transfers to Near-Earth Objects *Probabilistic Safety Analysis of the Collision Between Space Debris and Satellite *Flatness-based Low-thrust Trajectory Optimization for Spacecraft Proximity Operations The contributing authors are expert researchers and practitioners in either the space engineering and/or in the applied optimization fields. Researchers and practitioners working in various applied aspects of space engineering will find this book practical and informative. Academics, graduate and post-graduate students in aerospace engineering, applied mathematics, operations research, optimization, and optimal control, will find this book useful.
This book presents the latest insights and developments in the field of socio-cultural inspired algorithms. Akin to evolutionary and swarm-based optimization algorithms, socio-cultural algorithms belong to the category of metaheuristics (problem-independent computational methods) and are inspired by natural and social tendencies observed in humans by which they learn from one another through social interactions. This book is an interesting read for engineers, scientists, and students studying/working in the optimization, evolutionary computation, artificial intelligence (AI) and computational intelligence fields.
Victor Isakov This volume contains various results on partial di?erential equations where Sobolev spaces are used. Their selection is motivated by the research int- ests of the editor and the geographicallinks to the places where S. L. Sobolev worked and lived: St. Petersburg, Moscow, and Novosibirsk. Most of the papers are written by leading experts in control theory and inverse pr- lems. Another reason for the selection is a strong link to applied areas. In my opinion, control theory and inverse problems are main areas of di?er- tial equations of importance for some branches of contemporary science and engineering. S. L. Sobolev, as many great mathematicians, was very much motivated by applications. He did not distinguished between pure and - plied mathematics, but, in his own words, between "good mathematics and bad mathematics. " While he possessed a brilliant analytical technique, he most valued innovative ideas, solutions of deep conceptual problems, and not mathematical decorations, perfecting exposition, and "generalizations. " S. L. Sobolev himself never published papers on inverse problems or c- trol theory, but he was very much aware of the state of art and he monitored research on inverse problems. In particular, in his lecture at a Conference on Di?erentialEquationsin1954(found inSobolev'sarchiveandmadeavailable to me by Alexander Bukhgeim), he outlined main inverse problems in g- physics: theinverseseismicproblem, theelectromagneticprospecting, andthe inverse problem of gravimetry.
Sobolev spaces become the established and universal language of partial differential equations and mathematical analysis. Among a huge variety of problems where Sobolev spaces are used, the following important topics are the focus of this volume: boundary value problems in domains with singularities, higher order partial differential equations, local polynomial approximations, inequalities in Sobolev-Lorentz spaces, function spaces in cellular domains, the spectrum of a Schrodinger operator with negative potential and other spectral problems, criteria for the complete integration of systems of differential equations with applications to differential geometry, some aspects of differential forms on Riemannian manifolds related to Sobolev inequalities, Brownian motion on a Cartan-Hadamard manifold, etc. Two short biographical articles on the works of Sobolev in the 1930s and the foundation of Akademgorodok in Siberia, supplied with unique archive photos of S. Sobolev are included.
The satellite range scheduling (SRS) problem, an important operations research problem in the aerospace industry consisting of allocating tasks among satellites and Earth-bound objects, is examined in this book. SRS principles and solutions are applicable to many areas, including: Satellite communications, where tasks are communication intervals between sets of satellites and ground stations Earth observation, where tasks are observations of spots on the Earth by satellites Sensor scheduling, where tasks are observations of satellites by sensors on the Earth. This self-contained monograph begins with a structured compendium of the problem and moves on to explain the optimal approach to the solution, which includes aspects from graph theory, set theory, game theory and belief networks. This book is accessible to students, professionals and researchers in a variety of fields, including: operations research, optimization, scheduling theory, dynamic programming and game theory. Taking account of the distributed, stochastic and dynamic variants of the problem, this book presents the optimal solution to the fixed interval SRS problem and how to migrate results into more complex cases. Reference algorithms and traditional algorithms for solving the scheduling problems are provided and compared with examples and simulations in practical scenarios.
In 2014, winner of "Outstanding Book Award" by The Japan Society for Fuzzy Theory and Intelligent Informatics. Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies. The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins by outlining the history and development of the fuzzy random variable before detailing numerous optimization models and applications that include the design of system controls for a dam. |
![]() ![]() You may like...
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang
Hardcover
R2,308
Discovery Miles 23 080
Radar Waveform Design based on…
Guolong Cui, Antonio Maio, …
Hardcover
Computational Optimization Techniques…
Muhammad Sarfraz, Samsul Ariffin Abdul Karim
Hardcover
R3,358
Discovery Miles 33 580
Submodular Functions and Optimization…
Satoru Fujishige
Hardcover
Model Reduction of Complex Dynamical…
Peter Benner, Tobias Breiten, …
Hardcover
R3,917
Discovery Miles 39 170
Mathematical Optimization and Modeling…
Lucas Lincoln
Hardcover
|