![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
This book includes selected peer-reviewed papers presented at the International Conference on Modeling, Simulation and Optimization (CoMSO 2021), organized by National Institute of Technology, Silchar, Assam, India, during December 16-18, 2021. The book covers topics of modeling, simulation and optimization, including computational modeling and simulation, system modeling and simulation, device/VLSI modeling and simulation, control theory and applications, modeling and simulation of energy systems and optimization. The book disseminates various models of diverse systems and includes solutions of emerging challenges of diverse scientific fields.
This book offers a timely snapshot of current soft-computing research and solutions to decision-making and optimization problems, which are ubiquitous in the current social and technological context, addressing fields including logistics, transportation and data analysis. Written by leading international experts from the United States, Brazil and Cuba, as well as the United Kingdom, France, Finland and Spain, it discusses theoretical developments in and practical applications of soft computing in fields where these methods are crucial to obtaining better models, including: intelligent transportation systems, maritime logistics, portfolio selection, decision- making, fuzzy cognitive maps, and fault detection. The book is dedicated to Professor Jose L. Verdegay, a pioneer who has been actively pursuing research in fuzzy sets theory and soft computing since 1982, in honor of his 65th birthday.
The 2020 International Conference on Uncertainty Quantification & Optimization gathered together internationally renowned researchers in the fields of optimization and uncertainty quantification. The resulting proceedings cover all related aspects of computational uncertainty management and optimization, with particular emphasis on aerospace engineering problems. The book contributions are organized under four major themes: Applications of Uncertainty in Aerospace & Engineering Imprecise Probability, Theory and Applications Robust and Reliability-Based Design Optimisation in Aerospace Engineering Uncertainty Quantification, Identification and Calibration in Aerospace Models This proceedings volume is useful across disciplines, as it brings the expertise of theoretical and application researchers together in a unified framework.
This book investigates Reliability-based Multidisciplinary Design Optimization (RBMDO) theory and its application in the design of deep manned submersibles (DMSs). Multidisciplinary Design Optimization (MDO) is an effective design method for large engineering systems like aircraft, warships, and satellites, which require designers and engineers from various disciplines to cooperate with each other. MDO can be used to handle the conflicts that arise between these disciplines, and focuses on the optimal design of the system as a whole. However, it can also push designs to the brink of failure. In order to keep the system balanced, Reliability-based Design (RBD) must be incorporated into MDO. Consequently, new algorithms and methods have to be developed for RBMDO theory. This book provides an essential overview of MDO, RBD, and RBMDO and subsequently introduces key algorithms and methods by means of case analyses. In closing, it introduces readers to the design of DMSs and applies RBMDO methods to the design of the manned hull and the general concept design. The book is intended for all students and researchers who are interested in system design theory, and for engineers working on large, complex engineering systems.
The contributions appearing in this volume are a snapshot of the different topics that were discussed during the Second Conference "Mathematics and Image Processing held at the University of Orl ans in 2010. They mainly concern, image reconstruction, texture extraction and image classification and involve a variety of different methods and applications. Therefore it was impossible to split the papers into generic groups which is why they are presented in alphabetic order. However they mainly concern: texture analysis (5 papers) with different techniques (variational analysis, wavelet and morphological component analysis, fractional Brownian fields), geometrical methods (2 papers ) for restoration and invariant feature detection, classification (with multifractal analysis), neurosciences imaging and analysis of Multi-Valued Images.
The book is devoted to intelligent design of structures as a novel kind of designing based on computational intelligence. The proposed methodology based on computational intelligence has some heuristic and learning attributes typical for natural intelligence. Computer models of the structures are built on the base of the finite element method (FEM), the boundary element method (BEM) or coupling of FEM and BEM. The short description of possible discrete models of structures using these methods is included in the Chapter 2. Various kinds of intelligent approaches using sequential, parallel, distributed, fuzzy and hybrid evolutionary, immune and particle swarm algorithms and neural computing are presented in Chapter 3. Different kinds of optimization such as shape, topology, size and material optimization for structures under static and dynamical mechanical and thermo-mechanical loadings, structures with cracks and composite structures are considered in Chapter 4. Multi-objective optimization for coupled problems is also taken into account. Several numerical examples illustrating these kinds of optimization are presented for 2-D (plane-stress or plane-strain, plates, shells) as well as 3-D structures. Chapter 5 is devoted to special problems related to solving inverse problems in which boundary conditions, defects such as voids or cracks and material characteristics, are unknown. Closing comments summarizing the book are presented in Chapter 6.
Metaheuristics exhibit desirable properties like simplicity, easy parallelizability, and ready applicability to different types of optimization problems. After a comprehensive introduction to the field, the contributed chapters in this book include explanations of the main metaheuristics techniques, including simulated annealing, tabu search, evolutionary algorithms, artificial ants, and particle swarms, followed by chapters that demonstrate their applications to problems such as multiobjective optimization, logistics, vehicle routing, and air traffic management. The authors are leading researchers in this domain, with considerable teaching and applications experience, and the book will be of value to industrial practitioners, graduate students, and research academics.
Global optimization is one of the fastest developing fields in mathematical optimization. In fact, an increasing number of remarkably efficient deterministic algorithms have been proposed in the last ten years for solving several classes of large scale specially structured problems encountered in such areas as chemical engineering, financial engineering, location and network optimization, production and inventory control, engineering design, computational geometry, and multi-objective and multi-level optimization. These new developments motivated the authors to write a new book devoted to global optimization problems with special structures. Most of these problems, though highly nonconvex, can be characterized by the property that they reduce to convex minimization problems when some of the variables are fixed. A number of recently developed algorithms have been proved surprisingly efficient for handling typical classes of problems exhibiting such structures, namely low rank nonconvex structures. Audience: The book will serve as a fundamental reference book for all those who are interested in mathematical optimization.
This proceedings presents the result of the 8th International Conference in Network Analysis, held at the Higher School of Economics, Moscow, in May 2018. The conference brought together scientists, engineers, and researchers from academia, industry, and government. Contributions in this book focus on the development of network algorithms for data mining and its applications. Researchers and students in mathematics, economics, statistics, computer science, and engineering find this collection a valuable resource filled with the latest research in network analysis. Computational aspects and applications of large-scale networks in market models, neural networks, social networks, power transmission grids, maximum clique problem, telecommunication networks, and complexity graphs are included with new tools for efficient network analysis of large-scale networks. Machine learning techniques in network settings including community detection, clustering, and biclustering algorithms are presented with applications to social network analysis.
This monograph studies optimization problems for rigid punches in elastic media and for high-speed penetration of rigid strikers into deformed elastoplastic, concrete, and composite media using variational calculations, tools from functional analysis, and stochastic and min-max (guaranteed) optimization approaches with incomplete data. The book presents analytical and numerical results developed by the authors during the last ten years.
This book is a compilation of recent research on distributed optimization algorithms for the integral load management of plug-in electric vehicle (PEV) fleets and their potential services to the electricity system. It also includes detailed developed Matlab scripts. These algorithms can be implemented and extended to diverse applications where energy management is required (smart buildings, railways systems, task sharing in micro-grids, etc.). The proposed methodologies optimally manage PEV fleets' charge and discharge schedules by applying classical optimization, game theory, and evolutionary game theory techniques. Taking owner's requirements into consideration, these approaches provide services like load shifting, load balancing among phases of the system, reactive power supply, and task sharing among PEVs. The book is intended for use in graduate optimization and energy management courses, and readers are encouraged to test and adapt the scripts to their specific applications.
This textbook provides a hands-on treatment of the subject of optimization. A comprehensive set of problems and exercises makes it suitable for use in one or two semesters of an advanced undergraduate course or a first-year graduate course. Each half of the book contains a full semester's worth of complementary yet stand-alone material. The practical orientation of the topics chosen and a wealth of useful examples also make the book suitable as a reference work for practitioners in the field. In this second edition the authors have added sections on recent innovations, techniques, and methodologies.
This volume presents extensive research devoted to a broad spectrum of mathematics with emphasis on interdisciplinary aspects of Optimization and Probability. Chapters also emphasize applications to Data Science, a timely field with a high impact in our modern society. The discussion presents modern, state-of-the-art, research results and advances in areas including non-convex optimization, decentralized distributed convex optimization, topics on surrogate-based reduced dimension global optimization in process systems engineering, the projection of a point onto a convex set, optimal sampling for learning sparse approximations in high dimensions, the split feasibility problem, higher order embeddings, codifferentials and quasidifferentials of the expectation of nonsmooth random integrands, adjoint circuit chains associated with a random walk, analysis of the trade-off between sample size and precision in truncated ordinary least squares, spatial deep learning, efficient location-based tracking for IoT devices using compressive sensing and machine learning techniques, and nonsmooth mathematical programs with vanishing constraints in Banach spaces. The book is a valuable source for graduate students as well as researchers working on Optimization, Probability and their various interconnections with a variety of other areas. Chapter 12 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
The sequential quadratic hamiltonian (SQH) method is a novel numerical optimization procedure for solving optimal control problems governed by differential models. It is based on the characterisation of optimal controls in the framework of the Pontryagin maximum principle (PMP). The SQH method is a powerful computational methodology that is capable of development in many directions. The Sequential Quadratic Hamiltonian Method: Solving Optimal Control Problems discusses its analysis and use in solving nonsmooth ODE control problems, relaxed ODE control problems, stochastic control problems, mixed-integer control problems, PDE control problems, inverse PDE problems, differential Nash game problems, and problems related to residual neural networks. This book may serve as a textbook for undergraduate and graduate students, and as an introduction for researchers in sciences and engineering who intend to further develop the SQH method or wish to use it as a numerical tool for solving challenging optimal control problems and for investigating the Pontryagin maximum principle on new optimisation problems. Feature Provides insight into mathematical and computational issues concerning optimal control problems, while discussing many differential models of interest in different disciplines. Suitable for undergraduate and graduate students and as an introduction for researchers in sciences and engineering. Accompanied by codes which allow the reader to apply the SQH method to solve many different optimal control and optimisation problems
This book brings together the latest findings on efficient solutions of multi/many-objective optimization problems from the leading researchers in the field. The focus is on solving real-world optimization problems using strategies ranging from evolutionary to hybrid frameworks, and involving various computation platforms. The topics covered include solution frameworks using evolutionary to hybrid models in application areas like Analytics, Cancer Research, Traffic Management, Networks and Communications, E-Governance, Quantum Technology, Image Processing, etc. As such, the book offers a valuable resource for all postgraduate students and researchers interested in exploring solution frameworks for multi/many-objective optimization problems.
This edited book discusses creative and recent developments of fuzzy systems and its real-life applications of multiple criteria decision making. Keeping on the existing fuzzy sets and recent developed fuzzy sets, viz., intuitionistic fuzzy, Pythagorean fuzzy, Fermatean fuzzy, Hesitant fuzzy and multiple criteria decision approaches, this book is committed to probing the soft computing techniques and fuzzy multiple criteria decision making in favour of fuzzy intelligent system and business analytics. It also addresses novel development of fuzzy set theory as well as real-life applications of fuzzy systems. It presents challenging and useful real-world applications based on problems of decision making in various fields. The modelling and solution procedures of such real-world problems will be provided concisely although all topics start with a more developed resolution. The contributory chapters will be based on the vast research experiences of the authors in real-world decision-making problems. This book provides readers with a valuable conspectus of several decision-making problems as a reference for researchers and industrial practitioners in this field. This book will broadly cover recent development of fuzzy systems and its applications of multiple criteria decision making in the areas of management and production, manufacturing management, selections problems, group decision making, transportation and logistics, inventory control systems and interval technique/fuzzy technique (uncertainty) of the above mentioned areas.
Optimization problems were and still are the focus of mathematics from antiquity to the present. Since the beginning of our civilization, the human race has had to confront numerous technological challenges, such as finding the optimal solution of various problems including control technologies, power sources construction, applications in economy, mechanical engineering and energy distribution amongst others. These examples encompass both ancient as well as modern technologies like the first electrical energy distribution network in USA etc. Some of the key principles formulated in the middle ages were done by Johannes Kepler (Problem of the wine barrels), Johan Bernoulli (brachystochrone problem), Leonhard Euler (Calculus of Variations), Lagrange (Principle multipliers), that were formulated primarily in the ancient world and are of a geometric nature. In the beginning of the modern era, works of L.V. Kantorovich and G.B. Dantzig (so-called linear programming) can be considered amongst others. This book discusses a wide spectrum of optimization methods from classical to modern, alike heuristics. Novel as well as classical techniques is also discussed in this book, including its mutual intersection. Together with many interesting chapters, a reader will also encounter various methods used for proposed optimization approaches, such as game theory and evolutionary algorithms or modelling of evolutionary algorithm dynamics like complex networks.
The book discusses three classes of problems: the generalized Nash equilibrium problems, the bilevel problems and the mathematical programming with equilibrium constraints (MPEC). These problems interact through their mathematical analysis as well as their applications. The primary aim of the book is to present the modern tool of variational analysis and optimization, which are used to analyze these three classes of problems. All contributing authors are respected academicians, scientists and researchers from around the globe. These contributions are based on the lectures delivered by experts at CIMPA School, held at the University of Delhi, India, from 25 November-6 December 2013, and peer-reviewed by international experts. The book contains five chapters. Chapter 1 deals with nonsmooth, nonconvex bilevel optimization problems whose feasible set is described by using the graph of the solution set mapping of a parametric optimization problem. Chapter 2 describes a constraint qualification to MPECs considered as an application of calmness concept of multifunctions and is used to derive M-stationarity conditions for MPEC. Chapter 3 discusses the first- and second-order optimality conditions derived for a special case of a bilevel optimization problem in which the constraint set of the lower level problem is described as a general compact convex set. Chapter 4 concentrates the results of the modelization and analysis of deregulated electricity markets with a focus on auctions and mechanism design. Chapter 5 focuses on optimization approaches called reflection methods for protein conformation determination within the framework of matrix completion. The last chapter (Chap. 6) deals with the single-valuedness of quasimonotone maps by using the concept of single-directionality with a special focus on the case of the normal operator of lower semi-continuous quasiconvex functions.
This book is designed to serve as a textbook for courses offered to undergraduate and graduate students enrolled in Mathematics. The first edition of this book was published in 2015. As there is a demand for the next edition, it is quite natural to take note of the several suggestions received from the users of the earlier edition over the past six years. This is the prime motivation for bringing out a revised second edition with a thorough revision of all the chapters. The book provides a clear understanding of the basic concepts of differential and integral calculus starting with the concepts of sequences and series of numbers, and also introduces slightly advanced topics such as sequences and series of functions, power series, and Fourier series which would be of use for other courses in mathematics for science and engineering programs. The salient features of the book are - precise definitions of basic concepts; several examples for understanding the concepts and for illustrating the results; includes proofs of theorems; exercises within the text; a large number of problems at the end of each chapter as home-assignments. The student-friendly approach of the exposition of the book would be of great use not only for students but also for the instructors. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in a mathematics course.
This highly informative and carefully presented textbook introduces the general principles involved in system design and optimization as applicable to thermal systems, followed by the methods to accomplish them. It introduces contemporary techniques like Genetic Algorithms, Simulated Annealing, and Bayesian Inference in the context of optimization of thermal systems. There is a separate chapter devoted to inverse problems in thermal systems. It also contains sections on Integer Programming and Multi-Objective optimization. The linear programming chapter is fortified by a detailed presentation of the Simplex method. A major highlight of the textbook is the inclusion of workable MATLAB codes for examples of key algorithms discussed in the book. Examples in each chapter clarify the concepts and methods presented and end-of-chapter problems supplement the material presented and enhance the learning process.
This book presents a panorama about the recent progress of industrial mathematics from the point of view of both industrials and researchers. The chapters correspond to a selection of the contributions presented in the "Industry Day" and in the Minisymposium "EU - MATHS - IN: Success Stories of Applications of Mathematics to Industry" organized in the framework of the International Conference ICIAM 2019 held in Valencia (Spain) on July 15-19, 2019. In the Industry Day, included for the first time in this series of Conferences, representatives of companies from different countries and several sectors presented their view about the benefits regarding the usage of mathematical tools and/or collaboration with mathematicians. The contributions of this special session were addressed to industry people. Minisymposium contributions detailed some collaborations between mathematicians and industrials that led to real benefits in several European companies. All the speakers were affiliated in some of the European National Networks that constitute the European Service Network of Mathematics for Industry and Innovation (EU-MATHS-IN).
Differential equations play a noticeable role in engineering, physics, economics, and other disciplines. They permit us to model changing forms in both mathematical and physical problems. These equations are precisely used when a deterministic relation containing some continuously varying quantities and their rates of change in space and/or time is recognized or postulated. This book is intended to provide a straightforward introduction to the concept of partial differential equations. It provides a diversity of numerical examples framed to nurture the intellectual level of scholars. It includes enough examples to provide students with a clear concept and also offers short questions for comprehension. Construction of real-life problems is considered in the last chapter along with applications. Research scholars and students working in the fields of engineering, physics, and different branches of mathematics need to learn the concepts of partial differential equations to solve their problems. This book will serve their needs instead of having to use more complex books that contain more concepts than needed.
This book is for those interested in number systems, abstract algebra, and analysis. It provides an understanding of negative and fractional numbers with theoretical background and explains rationale of irrational and complex numbers in an easy to understand format. This book covers the fundamentals, proof of theorems, examples, definitions, and concepts. It explains the theory in an easy and understandable manner and offers problems for understanding and extensions of concept are included. The book provides concepts in other fields and includes an understanding of handling of numbers by computers. Research scholars and students working in the fields of engineering, science, and different branches of mathematics will find this book of interest, as it provides the subject in a clear and concise way.
With the advent of approximation algorithms for NP-hard combinatorial optimization problems, several techniques from exact optimization such as the primal-dual method have proven their staying power and versatility. This book describes a simple and powerful method that is iterative in essence, and similarly useful in a variety of settings for exact and approximate optimization. The authors highlight the commonality and uses of this method to prove a variety of classical polyhedral results on matchings, trees, matroids, and flows. The presentation style is elementary enough to be accessible to anyone with exposure to basic linear algebra and graph theory, making the book suitable for introductory courses in combinatorial optimization at the upper undergraduate and beginning graduate levels. Discussions of advanced applications illustrate their potential for future application in research in approximation algorithms. |
You may like...
Computational Optimization Techniques…
Muhammad Sarfraz, Samsul Ariffin Abdul Karim
Hardcover
R3,099
Discovery Miles 30 990
Optimization, Dynamics and Economic…
Engelbert J. Dockner, R.F. Hartl, …
Hardcover
R2,459
Discovery Miles 24 590
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang
Hardcover
R2,132
Discovery Miles 21 320
Problem Solving and Uncertainty Modeling…
Pratiksha Saxena, Dipti Singh, …
Hardcover
R5,687
Discovery Miles 56 870
|