![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Optimization > General
In recent years global optimization has found applications in many interesting areas of science and technology including molecular biology, chemical equilibrium problems, medical imaging and networks. The collection of papers in this book indicates the diverse applicability of global optimization. Furthermore, various algorithmic, theoretical developments and computational studies are presented. Audience: All researchers and students working in mathematical programming.
Solutions manual available upon adoptions.
This is the first book presenting a broad overview of parallelism in constraint-based reasoning formalisms. In recent years, an increasing number of contributions have been made on scaling constraint reasoning thanks to parallel architectures. The goal in this book is to overview these achievements in a concise way, assuming the reader is familiar with the classical, sequential background. It presents work demonstrating the use of multiple resources from single machine multi-core and GPU-based computations to very large scale distributed execution platforms up to 80,000 processing units. The contributions in the book cover the most important and recent contributions in parallel propositional satisfiability (SAT), maximum satisfiability (MaxSAT), quantified Boolean formulas (QBF), satisfiability modulo theory (SMT), theorem proving (TP), answer set programming (ASP), mixed integer linear programming (MILP), constraint programming (CP), stochastic local search (SLS), optimal path finding with A*, model checking for linear-time temporal logic (MC/LTL), binary decision diagrams (BDD), and model-based diagnosis (MBD). The book is suitable for researchers, graduate students, advanced undergraduates, and practitioners who wish to learn about the state of the art in parallel constraint reasoning.
This book presents models and algorithms for complex scheduling problems. Besides resource-constrained project scheduling problems with applications also job-shop problems with flexible machines, transportation or limited buffers are discussed. Discrete optimization methods like linear and integer programming, constraint propagation techniques, shortest path and network flow algorithms, branch-and-bound methods, local search and genetic algorithms, and dynamic programming are presented. They are used in exact or heuristic procedures to solve the introduced complex scheduling problems. Furthermore, methods for calculating lower bounds are described. Most algorithms are formulated in detail and illustrated with examples. In this second edition some errors were corrected, some parts were explained in more detail, and new material has been added. In particular, further generalizations of the RCPSP, additional practical applications and some more algorithms were integrated.
This book on canonical duality theory provides a comprehensive review of its philosophical origin, physics foundation, and mathematical statements in both finite- and infinite-dimensional spaces. A ground-breaking methodological theory, canonical duality theory can be used for modeling complex systems within a unified framework and for solving a large class of challenging problems in multidisciplinary fields in engineering, mathematics, and the sciences. This volume places a particular emphasis on canonical duality theory's role in bridging the gap between non-convex analysis/mechanics and global optimization. With 18 total chapters written by experts in their fields, this volume provides a nonconventional theory for unified understanding of the fundamental difficulties in large deformation mechanics, bifurcation/chaos in nonlinear science, and the NP-hard problems in global optimization. Additionally, readers will find a unified methodology and powerful algorithms for solving challenging problems in complex systems with real-world applications in non-convex analysis, non-monotone variational inequalities, integer programming, topology optimization, post-buckling of large deformed structures, etc. Researchers and graduate students will find explanation and potential applications in multidisciplinary fields.
The aim in this graduate level text is to outline the key mathematical concepts that underpin these important questions in applied mathematics. These concepts involve discrete mathematics (particularly graph theory), optimization, computer science, and several ideas in biology.
This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC's and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors' SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. ... The presentation includes geometric interpretation, linear programming duality, and the simplex method in its primal and dual forms. ... The authors have made an effort to collect ... the most useful recent ideas and algorithms in this area. ... A guide to the existing software is included as well." (Darinka Dentcheva, Mathematical Reviews, Issue 2006 c) "This is a graduate text in optimisation whose main emphasis is in stochastic programming. The book is clearly written. ... This is a good book for providing mathematicians, economists and engineers with an almost complete start up information for working in the field. I heartily welcome its publication. ... It is evident that this book will constitute an obligatory reference source for the specialists of the field." (Carlos Narciso Bouza Herrera, Zentralblatt MATH, Vol. 1104 (6), 2007)
In the quest to understand and model the healthy or sick human body, re searchers and medical doctors are utilizing more and more quantitative tools and techniques. This trend is pushing the envelope of a new field we call Biomedical Computing, as an exciting frontier among signal processing, pattern recognition, optimization, nonlinear dynamics, computer science and biology, chemistry and medicine. A conference on Biocomputing was held during February 25-27, 2001 at the University of Florida. The conference was sponsored by the Center for Applied Optimization, the Computational Neuroengineering Center, the Biomedical En gineering Program (through a Whitaker Foundation grant), the Brain Institute, the School of Engineering, and the University of Florida Research & Graduate Programs. The conference provided a forum for researchers to discuss and present new directions in Biocomputing. The well-attended three days event was highlighted by the presence of top researchers in the field who presented their work in Biocomputing. This volume contains a selective collection of ref ereed papers based on talks presented at this conference. You will find seminal contributions in genomics, global optimization, computational neuroscience, FMRI, brain dynamics, epileptic seizure prediction and cancer diagnostics. We would like to take the opportunity to thank the sponsors, the authors of the papers, the anonymous referees, and Kluwer Academic Publishers for making the conference successful and the publication of this volume possible. Panos M. Pardalos and Jose C."
There has been much recent progress in global optimization algo rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by the General Secretariat of Research and Tech nology of Greece, by the Ministry of Education of Greece, and several local Greek government agencies and companies. This volume contains a selective collection of refereed papers based on invited and contribut ing talks presented at this conference. The two themes of convexity and global optimization pervade this book. The conference provided a forum for researchers working on different aspects of convexity and global opti mization to present their recent discoveries, and to interact with people working on complementary aspects of mathematical programming."
Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners - including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers - are interested in solving large-scale MINLP instances.
Performance evaluation of increasingly complex human-made systems requires the use of simulation models. However, these systems are difficult to describe and capture by succinct mathematical models. The purpose of this book is to address the difficulties of the optimization of complex systems via simulation models or other computation-intensive models involving possible stochastic effects and discrete choices. This book establishes distinct advantages of the "softer" ordinal approach for search-based type problems, analyzes its general properties, and shows the many orders of magnitude improvement in computational efficiency that is possible.
This book focuses on optimal control and systems engineering in the big data era. It examines the scientific innovations in optimization, control and resilience management that can be applied to further success. In both business operations and engineering applications, there are huge amounts of data that can overwhelm computing resources of large-scale systems. This "big data" provides new opportunities to improve decision making and addresses risk for individuals as well in organizations. While utilizing data smartly can enhance decision making, how to use and incorporate data into the decision making framework remains a challenging topic. Ultimately the chapters in this book present new models and frameworks to help overcome this obstacle. Optimization and Control for Systems in the Big-Data Era: Theory and Applications is divided into five parts. Part I offers reviews on optimization and control theories, and Part II examines the optimization and control applications. Part III provides novel insights and new findings in the area of financial optimization analysis. The chapters in Part IV deal with operations analysis, covering flow-shop operations and quick response systems. The book concludes with final remarks and a look to the future of big data related optimization and control problems.
This introduction to the field of hyper-heuristics presents the required foundations and tools and illustrates some of their applications. The authors organized the 13 chapters into three parts. The first, hyper-heuristic fundamentals and theory, provides an overview of selection constructive, selection perturbative, generation constructive and generation perturbative hyper-heuristics, and then a formal definition of hyper-heuristics. The chapters in the second part of the book examine applications of hyper-heuristics in vehicle routing, nurse rostering, packing and examination timetabling. The third part of the book presents advanced topics and then a summary of the field and future research directions. Finally the appendices offer details of the HyFlex framework and the EvoHyp toolkit, and then the definition, problem model and constraints for the most tested combinatorial optimization problems. The book will be of value to graduate students, researchers, and practitioners.
This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 17-19, 2016. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of deterministic and stochastic optimization techniques in energy, finance, logistics, analytics, health, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.
This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning. Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well as for graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.
Constrained optimization models are core tools in business, science, government, and the military with applications including airline scheduling, control of petroleum refining operations, investment decisions, and many others. Constrained optimization models have grown immensely in scale and complexity in recent years as inexpensive computing power has become widely available. Models now frequently have many complicated interacting constraints, giving rise to a host of issues related to feasibility and infeasibility. For example, it is sometimes difficult to find any feasible point at all for a large model, or even to accurately determine if one exists, e.g. for nonlinear models. If the model is feasible, how quickly can a solution be found? If the model is infeasible, how can the cause be isolated and diagnosed? Can a repair to restore feasibility be carried out automatically? Researchers have developed numerous algorithms and computational methods in recent years to address such issues, with a number of surprising spin-off applications in fields such as artificial intelligence and computational biology. Over the same time period, related approaches and techniques relating to feasibility and infeasibility of constrained problems have arisen in the constraint programming community. Feasibility and Infeasibility in Optimization is a timely expository book that summarizes the state of the art in both classical and recent algorithms related to feasibility and infeasibility in optimization, with a focus on practical methods. All model forms are covered, including linear, nonlinear, and mixed-integer programs. Connections to related work in constraint programming are shown. Part Iof the book addresses algorithms for seeking feasibility quickly, including new methods for the difficult cases of nonlinear and mixed-integer programs. Part II provides algorithms for analyzing infeasibility by isolating minimal infeasible (or maximum feasible) subsets of constraints, or by finding the best repair for the infeasibility. Infeasibility analysis algorithms have arisen primarily over the last two decades, and the book covers these in depth and detail. Part III describes applications in numerous areas outside of direct infeasibility analysis such as finding decision trees for data classification, analyzing protein folding, radiation treatment planning, automated test assembly, etc. A main goal of the book is to impart an understanding of the methods so that practitioners can make immediate use of existing algorithms and software, and so that researchers can extend the state of the art and find new applications. The book is of interest to researchers, students, and practitioners across the applied sciences who are working on optimization problems.
The chapters which appear in this volume are selected studies presented at the First International Conference on Engineering and Applied Sciences Optimization (OPT-i), Kos, Greece, 4-6 June 2014 and works written by friends, former colleagues and students of the late Professor M. G. Karlaftis; all in the area of optimization that he loved and published so much in himself. The subject areas represented here range from structural optimization, logistics, transportation, traffic and telecommunication networks to operational research, metaheuristics, multidisciplinary and multiphysics design optimization, etc. This volume is dedicated to the life and the memory of Professor Matthew G. Karlaftis, who passed away a few hours before he was to give the opening speech at OPT-i. All contributions reflect the warmth and genuine friendship which he enjoyed from his associates and show how much his scientific contribution has been appreciated. He will be greatly missed and it is hoped that this volume will be received as a suitable memorial to his life and achievements.
This book is devoted to geometric methods in the theory of differential equations with quadratic right-hand sides (Riccati-type equations), which are closely related to the calculus of variations and optimal control theory. Connections of the calculus of variations and the Riccati equation with the geometry of Lagrange-Grassmann manifolds and classical Cartan-Siegel homogeneity domains in a space of several complex variables are considered. In the study of the minimization problem for a multiple integral, a quadratic partial differential equation that is an analogue of the Riccati equation in the calculus of varatiations is studied. This book is based on lectures given by the author ower a period of several years in the Department of Mechanics and Mathematics of Moscow State University. The book is addressed to undergraduate and graduate students, scientific researchers and all specialists interested in the problems of geometry, the calculus of variations, and differential equations.
Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named "Hybridized Nash-Pareto games". Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with civil aircraft and UAV, UCAV systems are implemented numerically and discussed. Applications of increasing optimization complexity are presented as well as two hands-on test cases problems. These examples focus on aeronautical applications and will be useful to the practitioner in the laboratory or in industrial design environments. The evolutionary methods coupled with games presented in this volume can be applied to other areas including surface and marine transport, structures, biomedical engineering, renewable energy and environmental problems. This book will be of interest to students, young scientists and engineers involved in the field of multi physics optimization.
Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the world share their perspectives on specific aspects of numerical NSO. The book is divided into four parts, the first of which considers general methods including subgradient, bundle and gradient sampling methods. In turn, the second focuses on methods that exploit the problem's special structure, e.g. algorithms for nonsmooth DC programming, VU decomposition techniques, and algorithms for minimax and piecewise differentiable problems. The third part considers methods for special problems like multiobjective and mixed integer NSO, and problems involving inexact data, while the last part highlights the latest advancements in derivative-free NSO. Given its scope, the book is ideal for students attending courses on numerical nonsmooth optimization, for lecturers who teach optimization courses, and for practitioners who apply nonsmooth optimization methods in engineering, artificial intelligence, machine learning, and business. Furthermore, it can serve as a reference text for experts dealing with nonsmooth optimization.
This book offers a valuable reference guide for researchers in distributed optimization and for senior undergraduate and graduate students alike. Focusing on the natures and functions of agents, communication networks and algorithms in the context of distributed optimization for networked control systems, this book introduces readers to the background of distributed optimization; recent developments in distributed algorithms for various types of underlying communication networks; the implementation of computation-efficient and communication-efficient strategies in the execution of distributed algorithms; and the frameworks of convergence analysis and performance evaluation. On this basis, the book then thoroughly studies 1) distributed constrained optimization and the random sleep scheme, from an agent perspective; 2) asynchronous broadcast-based algorithms, event-triggered communication, quantized communication, unbalanced directed networks, and time-varying networks, from a communication network perspective; and 3) accelerated algorithms and stochastic gradient algorithms, from an algorithm perspective. Finally, the applications of distributed optimization in large-scale statistical learning, wireless sensor networks, and for optimal energy management in smart grids are discussed.
This book is a collection of original papers presented at the International Conference on Computational Mathematics in Nanoelectronics and Astrophysics (CMNA 2018) held at the Indian Institute of Technology Indore, India, from 1 to 3 November 2018. It aims at presenting recent developments of computational mathematics in nanoelectronics, astrophysics and related areas of space sciences and engineering. These proceedings discuss the most advanced innovations, trends and real-world challenges encountered and their solutions with the application of computational mathematics in nanoelectronics, astrophysics and space sciences. From focusing on nano-enhanced smart technological developments to the research contributions of premier institutes in India and abroad on ISRO's future space explorations-this book includes topics from highly interdisciplinary areas of research. The book is of interest to researchers, students and practising engineers working in diverse areas of science and engineering, ranging from applied and computational mathematics to nanoelectronics, nanofabrications and astrophysics.
The material of the present book is an extension of a graduate course given by the author at the University "Al.I. Cuza" Iasi and is intended for stu dents and researchers interested in the applications of optimal control and in mathematical biology. Age is one of the most important parameters in the evolution of a bi ological population. Even if for a very long period age structure has been considered only in demography, nowadays it is fundamental in epidemiology and ecology too. This is the first book devoted to the control of continuous age structured populationdynamics.It focuses on the basic properties ofthe solutions and on the control of age structured population dynamics with or without diffusion. The main goal of this work is to familiarize the reader with the most important problems, approaches and results in the mathematical theory of age-dependent models. Special attention is given to optimal harvesting and to exact controllability problems, which are very important from the econom ical or ecological points of view. We use some new concepts and techniques in modern control theory such as Clarke's generalized gradient, Ekeland's variational principle, and Carleman estimates. The methods and techniques we use can be applied to other control problems."
This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 18-20, 2010. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of optimization techniques in finance, logistics, health, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.
This book discusses recent developments in the vast domain of optimization. Featuring papers presented at the 1st International Conference on Frontiers in Optimization: Theory and Applications (FOTA 2016), held at the Heritage Institute of Technology, Kolkata, on 24-26 December 2016, it opens new avenues of research in all topics related to optimization, such as linear and nonlinear optimization; combinatorial-, stochastic-, dynamic-, fuzzy-, and uncertain optimization; optimal control theory; as well as multi-objective, evolutionary and convex optimization and their applications in intelligent information and technology, systems science, knowledge management, information and communication, supply chain and inventory control, scheduling, networks, transportation and logistics and finance. The book is a valuable resource for researchers, scientists and engineers from both academia and industry. |
![]() ![]() You may like...
Optimal Operation and Control of Power…
Nnamdi Nwulu, Saheed Lekan Gbadamosi
Hardcover
R3,389
Discovery Miles 33 890
Computational Optimization Techniques…
Muhammad Sarfraz, Samsul Ariffin Abdul Karim
Hardcover
R3,358
Discovery Miles 33 580
Socio-Inspired Optimization Methods for…
Apoorva Shastri, Aniket Nargundkar, …
Hardcover
R2,873
Discovery Miles 28 730
Nature-Inspired Computing for Smart…
Santosh Kumar Das, Thanh-Phong Dao, …
Hardcover
R2,908
Discovery Miles 29 080
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang
Hardcover
R2,308
Discovery Miles 23 080
Submodular Functions and Optimization…
Satoru Fujishige
Hardcover
|