![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
This book systematically discusses nonlinear interval optimization design theory and methods. Firstly, adopting a mathematical programming theory perspective, it develops an innovative mathematical transformation model to deal with general nonlinear interval uncertain optimization problems, which is able to equivalently convert complex interval uncertain optimization problems to simple deterministic optimization problems. This model is then used as the basis for various interval uncertain optimization algorithms for engineering applications, which address the low efficiency caused by double-layer nested optimization. Further, the book extends the nonlinear interval optimization theory to design problems associated with multiple optimization objectives, multiple disciplines, and parameter dependence, and establishes the corresponding interval optimization models and solution algorithms. Lastly, it uses the proposed interval uncertain optimization models and methods to deal with practical problems in mechanical engineering and related fields, demonstrating the effectiveness of the models and methods.
Two approaches are known for solving large-scale unconstrained optimization problems-the limited-memory quasi-Newton method (truncated Newton method) and the conjugate gradient method. This is the first book to detail conjugate gradient methods, showing their properties and convergence characteristics as well as their performance in solving large-scale unconstrained optimization problems and applications. Comparisons to the limited-memory and truncated Newton methods are also discussed. Topics studied in detail include: linear conjugate gradient methods, standard conjugate gradient methods, acceleration of conjugate gradient methods, hybrid, modifications of the standard scheme, memoryless BFGS preconditioned, and three-term. Other conjugate gradient methods with clustering the eigenvalues or with the minimization of the condition number of the iteration matrix, are also treated. For each method, the convergence analysis, the computational performances and the comparisons versus other conjugate gradient methods are given. The theory behind the conjugate gradient algorithms presented as a methodology is developed with a clear, rigorous, and friendly exposition; the reader will gain an understanding of their properties and their convergence and will learn to develop and prove the convergence of his/her own methods. Numerous numerical studies are supplied with comparisons and comments on the behavior of conjugate gradient algorithms for solving a collection of 800 unconstrained optimization problems of different structures and complexities with the number of variables in the range [1000,10000]. The book is addressed to all those interested in developing and using new advanced techniques for solving unconstrained optimization complex problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master students in mathematical programming, will find plenty of information and practical applications for solving large-scale unconstrained optimization problems and applications by conjugate gradient methods.
Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampere equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations. Contents From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton-Jacobi-Bellman equations Improving policies for Hamilton-Jacobi-Bellman equations by postprocessing Viability approach to simulation of an adaptive controller Galerkin approximations for the optimal control of nonlinear delay differential equations Efficient higher order time discretization schemes for Hamilton-Jacobi-Bellman equations based on diagonally implicit symplectic Runge-Kutta methods Numerical solution of the simple Monge-Ampere equation with nonconvex Dirichlet data on nonconvex domains On the notion of boundary conditions in comparison principles for viscosity solutions Boundary mesh refinement for semi-Lagrangian schemes A reduced basis method for the Hamilton-Jacobi-Bellman equation within the European Union Emission Trading Scheme
Predictive Control is aimed at students wishing to learn predictive control, as well as teachers, engineers and technicians of the profession. The book proposes a simple predictive controller where the control laws are given in clear text that requires no calculations. Adjustment, reduced to one or two parameters, is particularly easy, by means of charts, thus allowing the operator to choose the horizon according to the desired performances. Implementation is discussed in detail in two forms: RS or RST controller in z-1, and pseudo-code realization algorithms for a complete program (model and controller). The book is simple and practical, with the aim of the industrial implementation of many processes: Broida models, Strejc, integrators, dual integrators, with delay, or with inverse response. All settings are abundantly illustrated with response curves.
Optimization has long been a source of both inspiration and applications for geometers, and conversely, discrete and convex geometry have provided the foundations for many optimization techniques, leading to a rich interplay between these subjects. The purpose of the Workshop on Discrete Geometry, the Conference on Discrete Geometry and Optimization, and the Workshop on Optimization, held in September 2011 at the Fields Institute, Toronto, was to further stimulate the interaction between geometers and optimizers. This volume reflects the interplay between these areas. The inspiring Fejes Toth Lecture Series, delivered by Thomas Hales of the University of Pittsburgh, exemplified this approach. While these fields have recently witnessed a lot of activity and successes, many questions remain open. For example, Fields medalist Stephen Smale stated that the question of the existence of a strongly polynomial time algorithm for linear optimization is one of the most important unsolved problems at the beginning of the 21st century. The broad range of topics covered in this volume demonstrates the many recent and fruitful connections between different approaches, and features novel results and state-of-the-art surveys as well as open problems. "
Systems with mechanical degrees of freedom containing unstable objects are analysed in this monograph and algorithms for their control are developed, discussed, and numerically tested. This is achieved by identifying unstable modes of motion and using all available resources to suppress them. By using this approach the region of states from which a stable regime can be reached is maximised. The systems discussed in this book are models for pendula and vehicles and find applications in mechatronics, robotics as well as in mechanical and automotive engineering.
This book is a detailed introduction to selective maintenance and updates readers on recent advances in this field, emphasizing mathematical formulation and optimization techniques. The book is useful for reliability engineers and managers engaged in the practice of reliability engineering and maintenance management. It also provides references that will lead to further studies at the end of each chapter. This book is a reference for researchers in reliability and maintenance and can be used as an advanced text for students.
This book presents a structured approach to formulate, model, and solve mathematical optimization problems for a wide range of real world situations. Among the problems covered are production, distribution and supply chain planning, scheduling, vehicle routing, as well as cutting stock, packing, and nesting. The optimization techniques used to solve the problems are primarily linear, mixed-integer linear, nonlinear, and mixed integer nonlinear programming. The book also covers important considerations for solving real-world optimization problems, such as dealing with valid inequalities and symmetry during the modeling phase, but also data interfacing and visualization of results in a more and more digitized world. The broad range of ideas and approaches presented helps the reader to learn how to model a variety of problems from process industry, paper and metals industry, the energy sector, and logistics using mathematical optimization techniques.
This book focuses on a development of optimal, flexible, and efficient models and algorithms for cell formation in group technology. Its main aim is to provide a reliable tool that can be used by managers and engineers to design manufacturing cells based on their own preferences and constraints imposed by a particular manufacturing system. This tool could potentially lower production costs by minimizing other costs in a number of areas, thereby increasing profit in a manufacturing system. In the volume, the cell formation problem is considered in a systematic and formalized way, and several models are proposed, both heuristic and exact. The models are based on general clustering problems, and are flexible enough to allow for various objectives and constraints. The authors also provide results of numerical experiments involving both artificial data from academic papers in the field and real manufacturing data to certify the appropriateness of the models proposed. The book was intended to suit the broadest possible audience, and thus all algorithmic details are given in a detailed description with multiple numerical examples and informal explanations are provided for the theoretical results. In addition to managers and industrial engineers, this book is intended for academic researchers and students. It will also be attractive to many theoreticians, since it addresses many open problems in computer science and bioinformatics.
Here is a collection of nonlinear optimization applications from the real world, expressed in the General Algebraic Modeling System (GAMS). The concepts are presented so that the reader can quickly modify and update them to represent real-world situations.
This book explores mathematics in a wide variety of applications, ranging from problems in electronics, energy and the environment, to mechanics and mechatronics. The book gathers 81 contributions submitted to the 20th European Conference on Mathematics for Industry, ECMI 2018, which was held in Budapest, Hungary in June 2018. The application areas include: Applied Physics, Biology and Medicine, Cybersecurity, Data Science, Economics, Finance and Insurance, Energy, Production Systems, Social Challenges, and Vehicles and Transportation. In turn, the mathematical technologies discussed include: Combinatorial Optimization, Cooperative Games, Delay Differential Equations, Finite Elements, Hamilton-Jacobi Equations, Impulsive Control, Information Theory and Statistics, Inverse Problems, Machine Learning, Point Processes, Reaction-Diffusion Equations, Risk Processes, Scheduling Theory, Semidefinite Programming, Stochastic Approximation, Spatial Processes, System Identification, and Wavelets. The goal of the European Consortium for Mathematics in Industry (ECMI) conference series is to promote interaction between academia and industry, leading to innovations in both fields. These events have attracted leading experts from business, science and academia, and have promoted the application of novel mathematical technologies to industry. They have also encouraged industrial sectors to share challenging problems where mathematicians can provide fresh insights and perspectives. Lastly, the ECMI conferences are one of the main forums in which significant advances in industrial mathematics are presented, bringing together prominent figures from business, science and academia to promote the use of innovative mathematics in industry.
Evolutionary algorithms are very powerful techniques used to find solutions to real-world search and optimization problems. Many of these problems have multiple objectives, which leads to the need to obtain a set of optimal solutions, known as effective solutions. It has been found that using evolutionary algorithms is a highly effective way of finding multiple effective solutions in a single simulation run.
'Deb's book is complete, eminently readable, and the coverage is scholarly and thorough. It is my pleasure and duty to urge you to buy this book, read it, use it and enjoy it' - David E. Goldberg, University of Illinois at Urbana-Champaign, USA
This book deals with critical infrastructure safety analysis based on reliability modelling of multistate ageing system. It shows how changes of the operation process as well as climate-weather changes in the operating area of the critical infrastructure do influence the safety parameters of its assets. Building upon previous authors' research, the book formulates an integrated modeling approach where the multistate critical infrastructure safety model is combined with semi-Markov models for its operation process and for the climate-weather change process. This approach is shown to be successful in determining basic critical infrastructure safety, risk and resilience indicators, regardless of the number of assets and the number of their safety states. Besides the theory, the book reports on a successful application to the safety analysis of a real critical infrastructure, such as a port oil terminal. All in all, this book proposes a comprehensive and timely review of cutting-edge mathematical methods for safety identification, prediction and evaluation of critical infrastructures. It demonstrates that these methods can be applied in practice for analyzing safety of critical infrastructure under time-varying operation and climate-weather change processes.
The results presented here (including the assessment of a new tool - inhibitory trees) offer valuable tools for researchers in the areas of data mining, knowledge discovery, and machine learning, especially those whose work involves decision tables with many-valued decisions. The authors consider various examples of problems and corresponding decision tables with many-valued decisions, discuss the difference between decision and inhibitory trees and rules, and develop tools for their analysis and design. Applications include the study of totally optimal (optimal in relation to a number of criteria simultaneously) decision and inhibitory trees and rules; the comparison of greedy heuristics for tree and rule construction as single-criterion and bi-criteria optimization algorithms; and the development of a restricted multi-pruning approach used in classification and knowledge representation.
Martin Grotschel is one of the most influential mathematicians of our time. He has received numerous honors and holds a number of key positions in the international mathematical community. He celebrated his 65th birthday on September 10, 2013. Martin Grotschel s doctoral descendant tree 1983 2012, i.e., the first 30 years, features 39 children, 74 grandchildren, 24 great-grandchildren and 2 great-great-grandchildren, a total of 139 doctoral descendants. This book starts with a personal tribute to Martin Grotschel by the editors (Part I), a contribution by his very special predecessor Manfred Padberg on Facets and Rank of Integer Polyhedra (Part II), and the doctoral descendant tree 1983 2012 (Part III). The core of this book (Part IV) contains 16 contributions, each of which is coauthored by at least one doctoral descendant. The sequence of the articles starts with contributions to the theory of mathematical optimization, including polyhedral combinatorics, extended formulations, mixed-integer convex optimization, super classes of perfect graphs, efficient algorithms for subtree-telecenters, junctions in acyclic graphs and preemptive restricted strip covering, as well as efficient approximation of non-preemptive restricted strip covering. Combinations of new theoretical insights with algorithms and experiments deal with network design problems, combinatorial optimization problems with submodular objective functions and more general mixed-integer nonlinear optimization problems. Applications include VLSI layout design, systems biology, wireless network design, mean-risk optimization and gas network optimization. Computational studies include a semidefinite branch and cut approach for the max k-cut problem, mixed-integer nonlinear optimal control, and mixed-integer linear optimization for scheduling and routing of fly-in safari planes. The two closing articles are devoted to computational advances in general mixed integer linear optimization, the first by scientists working in industry, the second by scientists working in academia. These articles reflect the scientific facets of Martin Grotschel who has set standards in theory, computation and applications.
The Gradient Test: Another Likelihood-Based Test presents the latest on the gradient test, a large-sample test that was introduced in statistics literature by George R. Terrell in 2002. The test has been studied by several authors, is simply computed, and can be an interesting alternative to the classical large-sample tests, namely, the likelihood ratio (LR), Wald (W), and Rao score (S) tests. Due to the large literature about the LR, W and S tests, the gradient test is not frequently used to test hypothesis. The book covers topics on the local power of the gradient test, the Bartlett-corrected gradient statistic, the gradient statistic under model misspecification, and the robust gradient-type bounded-influence test.
Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.
This book contains selected papers presented at ICGEC 2021, the 14th International Conference on Genetic and Evolutionary Computing, held from October 21-23, 2021 in Jilin City, China. The conference was technically co-sponsored by Springer, Northeast Electric Power University Fujian University of Technology, Shandong University of Science and Technology, and Western Norway University of Applied Sciences. It is intended as an international forum for the researchers and professionals in all areas of genetic and evolutionary computing. And the readers may learn the up-to-date techniques of the mentioned topics, including swarm intelligence, artificial intelligence, information hiding and data mining techniques, which can help them to bring new ideas or apply the designed approaches from the collected papers to their professional jobs.
A presentation of general results for discussing local optimality and computation of the expansion of value function and approximate solution of optimization problems, followed by their application to various fields, from physics to economics. The book is thus an opportunity for popularizing these techniques among researchers involved in other sciences, including users of optimization in a wide sense, in mechanics, physics, statistics, finance and economics. Of use to research professionals, including graduate students at an advanced level.
This book describes the fundamental and theoretical concepts of optimization algorithms in a systematic manner, along with their potential applications and implementation strategies in mining engineering. It explains basics of systems engineering, linear programming, and integer linear programming, transportation and assignment algorithms, network analysis, dynamic programming, queuing theory and their applications to mine systems. Reliability analysis of mine systems, inventory management in mines, and applications of non-linear optimization in mines are discussed as well. All the optimization algorithms are explained with suitable examples and numerical problems in each of the chapters. Features include: * Integrates operations research, reliability, and novel computerized technologies in single volume, with a modern vision of continuous improvement of mining systems. * Systematically reviews optimization methods and algorithms applied to mining systems including reliability analysis. * Gives out software-based solutions such as MATLAB (R), AMPL, LINDO for the optimization problems. * All discussed algorithms are supported by examples in each chapter. * Includes case studies for performance improvement of the mine systems. This book is aimed primarily at professionals, graduate students, and researchers in mining engineering.
Reviews the literature of the Moth-Flame Optimization algorithm; Provides an in-depth analysis of equations, mathematical models, and mechanisms of the Moth-Flame Optimization algorithm; Proposes different variants of the Moth-Flame Optimization algorithm to solve binary, multi-objective, noisy, dynamic, and combinatorial optimization problems; Demonstrates how to design, develop, and test different hybrids of Moth-Flame Optimization algorithm; Introduces several applications areas of the Moth-Flame Optimization algorithm focusing in sustainability.
This book presents new techniques and methods for distributed control and optimization of networked microgrids. Distributed consensus issues under network-based and event-triggered mechanisms are first addressed in a multi-agent system framework, which can explicitly characterize the relationship between communication resources and the control performance. Then, considering the effects of network uncertainties, multi-agent system-based distributed schemes are tailored to solve the fundamental issues of networked microgrids such as distributed frequency regulation, voltage regulation, active power sharing/load sharing, and energy management. The monograph will contribute to stimulating extensive interest of researchers in electrical and control fields.
This book reports on the latest advances in adaptive critic control with robust stabilization for uncertain nonlinear systems. Covering the core theory, novel methods, and a number of typical industrial applications related to the robust adaptive critic control field, it develops a comprehensive framework of robust adaptive strategies, including theoretical analysis, algorithm design, simulation verification, and experimental results. As such, it is of interest to university researchers, graduate students, and engineers in the fields of automation, computer science, and electrical engineering wishing to learn about the fundamental principles, methods, algorithms, and applications in the field of robust adaptive critic control. In addition, it promotes the development of robust adaptive critic control approaches, and the construction of higher-level intelligent systems.
This book presents the construction and resolution of 50 practical optimization problems and covers an exceptionally wide range, including games-associated problems (Unblock Me, Sudokus), logistical problems, and problems concerning plant distribution, production, operations scheduling, management and resource allocation. The problems are divided into 5 difficulty levels. Problems in the first few levels are focused on learning the model construction methodology, while those in the last level include complex optimization environments. For each problem solution, the specific steps are illustrated, promoting reader comprehension. In addition, all the models are implemented in an optimization library, LINGO, their solutions have been analyzed and their correct construction has been verified. The book also includes a simple guide to implementing models in LINGO in a straightforward manner and in any input data format (text files, spreadsheets or databases). As an ideal companion to the author's previously published work Modelling in Mathematical Programming, the book is intended as a basic tool for students of operations research, and for researchers in any advanced area involving mathematical programming. |
You may like...
Mathematical Optimization in Computer…
Luiz Velho, Paulo Carvalho, …
Hardcover
R1,589
Discovery Miles 15 890
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang
Hardcover
R2,132
Discovery Miles 21 320
Modern Maximum Power Point Tracking…
Ali M. Eltamaly, Almoataz Y. Abdelaziz
Hardcover
R2,734
Discovery Miles 27 340
Problem Solving and Uncertainty Modeling…
Pratiksha Saxena, Dipti Singh, …
Hardcover
R5,687
Discovery Miles 56 870
Mathematical Optimization and Modeling…
Lucas Lincoln
Hardcover
|