![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
This book introduces several mathematical models in assembly line balancing based on stochastic programming and develops exact and heuristic methods to solve them. An assembly line system is a manufacturing process in which parts are added in sequence from workstation to workstation until the final assembly is produced. In an assembly line balancing problem, tasks belonging to different product models are allocated to workstations according to their processing times and precedence relationships among tasks. It incorporates two features, uncertain task times, and demand volatility, separately and simultaneously, into the conventional assembly line balancing model. A real-life case study related to the mask production during the COVID-19 pandemic is presented to illustrate the application of the proposed framework and methodology. The book is intended for graduate students who are interested in combinatorial optimizations in manufacturing with uncertain input.
Optimization from Human Genes to Cutting Edge Technologies The challenges faced by industry today are so complex that they can only be solved through the help and participation of optimization ex perts. For example, many industries in e-commerce, finance, medicine, and engineering, face several computational challenges due to the mas sive data sets that arise in their applications. Some of the challenges include, extended memory algorithms and data structures, new program ming environments, software systems, cryptographic protocols, storage devices, data compression, mathematical and statistical methods for knowledge mining, and information visualization. With advances in computer and information systems technologies, and many interdisci plinary efforts, many of the "data avalanche challenges" are beginning to be addressed. Optimization is the most crucial component in these efforts. Nowadays, the main task of optimization is to investigate the cutting edge frontiers of these technologies and systems and find the best solutions for their realization. Optimization principles are evident in nature (the perfect optimizer) and appeared early in human history. Did you ever watch how a spider catches a fly or a mosquito? Usually a spider hides at the edge of its net. When a fly or a mosquito hits the net the spider will pick up each line in the net to choose the tense line? Some biologists explain that the line gives the shortest path from the spider to its prey."
The book presents new results and applications of the topological derivative method in control theory, topology optimization and inverse problems. It also introduces the theory in singularly perturbed geometrical domains using selected examples. Recognized as a robust numerical technique in engineering applications, such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena, the topological derivative method is based on the asymptotic approximations of solutions to elliptic boundary value problems combined with mathematical programming tools. The book presents the first order topology design algorithm and its applications in topology optimization, and introduces the second order Newton-type reconstruction algorithm based on higher order topological derivatives for solving inverse reconstruction problems. It is intended for researchers and students in applied mathematics and computational mechanics interested in the mathematical aspects of the topological derivative method as well as its applications in computational mechanics.
This open access book demonstrates all the steps required to design heuristic algorithms for difficult optimization. The classic problem of the travelling salesman is used as a common thread to illustrate all the techniques discussed. This problem is ideal for introducing readers to the subject because it is very intuitive and its solutions can be graphically represented. The book features a wealth of illustrations that allow the concepts to be understood at a glance. The book approaches the main metaheuristics from a new angle, deconstructing them into a few key concepts presented in separate chapters: construction, improvement, decomposition, randomization and learning methods. Each metaheuristic can then be presented in simplified form as a combination of these concepts. This approach avoids giving the impression that metaheuristics is a non-formal discipline, a kind of cloud sculpture. Moreover, it provides concrete applications of the travelling salesman problem, which illustrate in just a few lines of code how to design a new heuristic and remove all ambiguities left by a general framework. Two chapters reviewing the basics of combinatorial optimization and complexity theory make the book self-contained. As such, even readers with a very limited background in the field will be able to follow all the content.
A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.
This book provides a Management Science approach to quality management in food production. Aspects of food quality, product conformance and reliability/food safety are examined, starting with wheat and ending with its value chain transformation into bread. Protein qualities that influence glycemic index levels in bread are used to compare the value chains of France and the US. With Kaizen models the book shows how changes in these characteristics are the result of management decisions made by the wheat growers in response to government policy and industry strategy. Lately, it provides step-by-step instructions on how to apply kaizen methodology and Deming's work on quality improvement to make the HACCPs (Hazard Analysis and Critical Control Points) in food safety systems more robust.
Nature-Inspired Optimization Algorithms, a comprehensive work on the most popular optimization algorithms based on nature, starts with an overview of optimization going from the classical to the latest swarm intelligence algorithm. Nature has a rich abundance of flora and fauna that inspired the development of optimization techniques, providing us with simple solutions to complex problems in an effective and adaptive manner. The study of the intelligent survival strategies of animals, birds, and insects in a hostile and ever-changing environment has led to the development of techniques emulating their behavior. This book is a lucid description of fifteen important existing optimization algorithms based on swarm intelligence and superior in performance. It is a valuable resource for engineers, researchers, faculty, and students who are devising optimum solutions to any type of problem ranging from computer science to economics and covering diverse areas that require maximizing output and minimizing resources. This is the crux of all optimization algorithms. Features: Detailed description of the algorithms along with pseudocode and flowchart Easy translation to program code that is also readily available in Mathworks website for some of the algorithms Simple examples demonstrating the optimization strategies are provided to enhance understanding Standard applications and benchmark datasets for testing and validating the algorithms are included This book is a reference for undergraduate and post-graduate students. It will be useful to faculty members teaching optimization. It is also a comprehensive guide for researchers who are looking for optimizing resources in attaining the best solution to a problem. The nature-inspired optimization algorithms are unconventional, and this makes them more efficient than their traditional counterparts.
This book will serve as a reference, presenting state-of-the-art research on theoretical aspects of optimal sensor coverage problems. Readers will find it a useful tool for furthering developments on theory and applications of optimal coverage; much of the content can serve as material for advanced topics courses at the graduate level. The book is well versed with the hottest research topics such as Lifetime of Coverage, Weighted Sensor Cover, k-Coverage, Heterogeneous Sensors, Barrier, Sweep and Partial Coverage, Mobile Sensors, Camera Sensors and Energy-Harvesting Sensors, and more. Topics are introduced in a natural order from simple covers to connected covers, to the lifetime problem. Later, the book begins revisiting earlier problems ranging from the introduction of weights to coverage by k sensors and partial coverage, and from sensor heterogeneity to novel problems such as the barrier coverage problem. The book ends with coverage of mobile sensors, camera sensors, energy-harvesting sensors, underwater sensors, and crowdsensing.
The book begins with an introduction to software reliability, models and techniques. The book is an informative book covering the strategies needed to assess software failure behaviour and its quality, as well as the application of optimization tools for major managerial decisions related to the software development process. It features a broad range of topics including software reliability assessment and apportionment, optimal allocation and selection decisions and upgradations problems. It moves through a variety of problems related to the evolving field of optimization of software reliability engineering, including software release time, resource allocating, budget planning and warranty models, which are each explored in depth in dedicated chapters. This book provides a comprehensive insight into present-day practices in software reliability engineering, making it relevant to students, researchers, academics and practising consultants and engineers.
Today, the optimization of production planning processes by means of IT and quantitative methods is a de-facto standard in the energy industry. Franch et al. inChapter1andIkenouyeinChapter2giveanintroduction, overview, and reasonsforthis. Furthermore, theenergyproblemnowisnotonlyachallenging one but also one of the most important issues in the world from the political and economical points of view. In every country, the government is faced with the problem of how to adopt the system of 'Cap and Trade. ' Especially energy consuming industries, such as steel, power, oil and chemicals, are seriously confronted with this problem. VIII Preface This is also the reason why the German Operations Research Society (GOR) and one of its working groups, held a symposium with the title "Stochastic Optimization in the Energy Industry. " During the 78th meeting of the GOR working group "Praxis der Mathematischen Optimierung/Real World Optimization" in Aachen at Procom GmbH on April 21/22, 2007, the speakers with an application background explained their requirements for stochasticoptimizationsolutionsbasedonpracticalexperiences. Thespeakers from the research side and the software system suppliers examined di?erent aspects of the whole subject - from the integration of wind energy, the chain of errors in nuclear power plants and the scheduling of hydroelectric power stations, and the risk assessment in trading activities to the various software systems which support stochastic optimization methods. The symposium o?ered an interesting overview which re?ected the - quirements, possibilities and restrictions of "Stochastic Optimization in the Energy Industry.
Designs in nanoelectronics often lead to challenging simulation problems and include strong feedback couplings. Industry demands provisions for variability in order to guarantee quality and yield. It also requires the incorporation of higher abstraction levels to allow for system simulation in order to shorten the design cycles, while at the same time preserving accuracy. The methods developed here promote a methodology for circuit-and-system-level modelling and simulation based on best practice rules, which are used to deal with coupled electromagnetic field-circuit-heat problems, as well as coupled electro-thermal-stress problems that emerge in nanoelectronic designs. This book covers: (1) advanced monolithic/multirate/co-simulation techniques, which are combined with envelope/wavelet approaches to create efficient and robust simulation techniques for strongly coupled systems that exploit the different dynamics of sub-systems within multiphysics problems, and which allow designers to predict reliability and ageing; (2) new generalized techniques in Uncertainty Quantification (UQ) for coupled problems to include a variability capability such that robust design and optimization, worst case analysis, and yield estimation with tiny failure probabilities are possible (including large deviations like 6-sigma); (3) enhanced sparse, parametric Model Order Reduction techniques with a posteriori error estimation for coupled problems and for UQ to reduce the complexity of the sub-systems while ensuring that the operational and coupling parameters can still be varied and that the reduced models offer higher abstraction levels that can be efficiently simulated. All the new algorithms produced were implemented, transferred and tested by the EDA vendor MAGWEL. Validation was conducted on industrial designs provided by end-users from the semiconductor industry, who shared their feedback, contributed to the measurements, and supplied both material data and process data. In closing, a thorough comparison to measurements on real devices was made in order to demonstrate the algorithms' industrial applicability.
This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will be useful to researchers and graduate students in the fields of optimization and variational analysis.
DYNAMIC OPTIMIZATION AND DIFFERENTIAL GAMES has been written to address the increasing number of Operations Research and Management Science problems (that is, applications) that involve the explicit consideration of time and of gaming among multiple agents. It is a book that will be used both as a textbook and as a reference and guide to engineers, operation researchers, applied mathematicians and social scientists whose work involves the theoretical aspects of dynamic optimization and differential games. Included throughout the text are detailed explanations of several original dynamic and game-theoretic mathematical models, which are of particular relevance in todaya (TM)s technologically-driven-global economy: revenue management, supply chain management, electric power systems, urban freight systems, dynamic congestion pricing, dynamic traffic assignment, electronic commerce and the Internet. In addition, there will be some more traditional applications with useful pedagogical content included in Chapter 1. The book combines an emphasis on deterministic models and methods along with an introduction to stochastic optimal control and stochastic differential games. And most important, the book covers both theory and applications. It develops the key results of deterministic, continuous time, optimal control theory from both the classical calculus of variations perspectives and the more modern approach of infinite dimensional mathematical programming. Infinite dimensional mathematical programming provides greater utility for solving continuous-time-differential-game problems.
This book presents open optimization problems in graph theory and networks. Each chapter reflects developments in theory and applications based on Gregory Gutin's fundamental contributions to advanced methods and techniques in combinatorial optimization. Researchers, students, and engineers in computer science, big data, applied mathematics, operations research, algorithm design, artificial intelligence, software engineering, data analysis, industrial and systems engineering will benefit from the state-of-the-art results presented in modern graph theory and its applications to the design of efficient algorithms for optimization problems. Topics covered in this work include: * Algorithmic aspects of problems with disjoint cycles in graphs * Graphs where maximal cliques and stable sets intersect * The maximum independent set problem with special classes * A general technique for heuristic algorithms for optimization problems * The network design problem with cut constraints * Algorithms for computing the frustration index of a signed graph * A heuristic approach for studying the patrol problem on a graph * Minimum possible sum and product of the proper connection number * Structural and algorithmic results on branchings in digraphs * Improved upper bounds for Korkel--Ghosh benchmark SPLP instances
Like norms, translation invariant functions are a natural and powerful tool for the separation of sets and scalarization. This book provides an extensive foundation for their application. It presents in a unified way new results as well as results which are scattered throughout the literature. The functions are defined on linear spaces and can be applied to nonconvex problems. Fundamental theorems for the function class are proved, with implications for arbitrary extended real-valued functions. The scope of applications is illustrated by chapters related to vector optimization, set-valued optimization, and optimization under uncertainty, by fundamental statements in nonlinear functional analysis and by examples from mathematical finance as well as from consumer and production theory. The book is written for students and researchers in mathematics and mathematical economics. Engineers and researchers from other disciplines can benefit from the applications, for example from scalarization methods for multiobjective optimization and optimal control problems.
Global optimization aims at solving the most general problems of deterministic mathematical programming: to find the global optimum of a nonlinear, nonconvex, multivariate function of continuous and/or integer variables subject to constraints which may be themselves nonlinear and nonconvex. In addition, once the solutions are found, proof of its optimality is also expected from this methodology. Therefore, with these difficulties in mind, global optimization is becoming an increasingly powerful and important methodology. Essays and Surveys in Global Optimization is the most recent examination of its mathematical capability, power, and wide ranging solutions to many fields in the applied sciences.
Multistage stochastic optimization problems appear in many ways in finance, insurance, energy production and trading, logistics and transportation, among other areas. They describe decision situations under uncertainty and with a longer planning horizon. This book contains a comprehensive treatment of today's state of the art in multistage stochastic optimization. It covers the mathematical backgrounds of approximation theory as well as numerous practical algorithms and examples for the generation and handling of scenario trees. A special emphasis is put on estimation and bounding of the modeling error using novel distance concepts, on time consistency and the role of model ambiguity in the decision process. An extensive treatment of examples from electricity production, asset liability management and inventory control concludes the book.
This book presents the application of some AI related optimization techniques in the operation and control of electric power systems. With practical applications and examples the use of functional analysis, simulated annealing, Tabu-search, Genetic algorithms and fuzzy systems for the optimization of power systems is discussed in detail. Preliminary mathematical concepts are presented before moving to more advanced material. Researchers and graduate students will benefit from this book. Engineers working in utility companies, operations and control, and resource management will also find this book useful.
Provides well-written self-contained chapters, including problem sets and exercises, making it ideal for the classroom setting; Introduces applied optimization to the hazardous waste blending problem; Explores linear programming, nonlinear programming, discrete optimization, global optimization, optimization under uncertainty, multi-objective optimization, optimal control and stochastic optimal control; Includes an extensive bibliography at the end of each chapter and an index; GAMS files of case studies for Chapters 2, 3, 4, 5, and 7 are linked to http://www.springer.com/math/book/978-0-387-76634-8; Solutions manual available upon adoptions.
Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also discusses Hamilton-Jacobi theory. By providing a sufficient and rigorous treatment of finite dimensional control problems, the book equips readers with the foundation to deal with other types of control problems, such as those governed by stochastic differential equations, partial differential equations, and differential games.
This book contains state-of-the-art contributions in the field of evolutionary and deterministic methods for design, optimization and control in engineering and sciences. Specialists have written each of the 34 chapters as extended versions of selected papers presented at the International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems (EUROGEN 2013). The conference was one of the Thematic Conferences of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Topics treated in the various chapters are classified in the following sections: theoretical and numerical methods and tools for optimization (theoretical methods and tools; numerical methods and tools) and engineering design and societal applications (turbo machinery; structures, materials and civil engineering; aeronautics and astronautics; societal applications; electrical and electronics applications), focused particularly on intelligent systems for multidisciplinary design optimization (mdo) problems based on multi-hybridized software, adjoint-based and one-shot methods, uncertainty quantification and optimization, multidisciplinary design optimization, applications of game theory to industrial optimization problems, applications in structural and civil engineering optimum design and surrogate models based optimization methods in aerodynamic design.
The volume is dedicated to Boris Mirkin on the occasion of his 70th birthday. In addition to his startling PhD results in abstract automata theory, Mirkin's ground breaking contributions in various fields of decision making and data analysis have marked the fourth quarter of the 20th century and beyond. Boris has done pioneering work in group choice, clustering, data mining and knowledge discovery aimed at finding and describing non-trivial or hidden structures-first of all, clusters, orderings and hierarchies-in multivariate and/or network data. Boris Mirkin has published several books, among them The Group Choice Problem (in Russian, 1974), Analysis of Categorical Attributes (in Russian, 1976), Graphs and Genes (in Russian, co-authored with S.N. Rodin, 1977), Group Choice (Wiley-Interscience, 1979), Analysis of Categorical and Structural Features (in Russian, 1976), Graphs and Genes (Springer, co-authored with S.N.Rodin, 1984), Groupings in Social-Economics Research (in Russian, 1985), Mathematical Classification and Clustering (Kluwer, 1996), Clustering: A Data Recovery Approach (Chapman and Hall/CRC, 2005; 2d much revised edition, 2012) and Core Concepts in Data Analysis: Summarization, Correlation, Visualization (Springer, 2011). This volume contains a collection of papers reflecting recent developments rooted in Boris' fundamental contribution to the state-of-the-art in group choice, ordering, clustering, data mining and knowledge discovery. Researchers, students and software engineers will benefit from new knowledge discovery techniques and application directions
Optimization on Riemannian manifolds-the result of smooth geometry and optimization merging into one elegant modern framework-spans many areas of science and engineering, including machine learning, computer vision, signal processing, dynamical systems and scientific computing. This text introduces the differential geometry and Riemannian geometry concepts that will help applied mathematics, computer science and engineering students and researchers gain a firm mathematical grounding to use these tools confidently in their research. Its chart-last approach will prove more intuitive from an optimizer's viewpoint, and all definitions and theorems are motivated to build time-tested optimization algorithms. Starting from first principles, the text goes on to cover current research on topics including worst-case complexity and geodesic convexity. Readers will appreciate the tricks of the trade for conducting research and for numerical implementations sprinkled throughout the book.
Large-Scale Nonlinear Optimization reviews and discusses recent advances in the development of methods and algorithms for nonlinear optimization and its applications, focusing on the large-dimensional case, the current forefront of much research. The chapters of the book, authored by some of the most active and well-known researchers in nonlinear optimization, give an updated overview of the field from different and complementary standpoints, including theoretical analysis, algorithmic development, implementation issues and applications. |
You may like...
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang
Hardcover
R2,132
Discovery Miles 21 320
Problem Solving and Uncertainty Modeling…
Pratiksha Saxena, Dipti Singh, …
Hardcover
R5,687
Discovery Miles 56 870
Mathematical Optimization and Modeling…
Lucas Lincoln
Hardcover
Computational Optimization Techniques…
Muhammad Sarfraz, Samsul Ariffin Abdul Karim
Hardcover
R3,099
Discovery Miles 30 990
|