![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > General
This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlierapproaches, based on some degree of heuristics, to the use ofmore and more common systematic methods. Even systematic methods can be developed and applied in a large number of forms so the text collects contributions from across the theory, methods and real-world automotive applications of optimization. Greater fuel economy, significant reductions in permissible emissions, new drivability requirements and the generally increasing complexity of automotive systems are among the criteria that the contributing authors set themselves to meet. In many cases multiple and often conflicting requirements give rise to multi-objective constrained optimization problems which are also considered. Some of these problems fall into the domain of the traditional multi-disciplinary optimization applied to system, sub-system or component design parameters and is performed based on system models; others require applications of optimization directly to experimental systems to determine either optimal calibration or the optimal control trajectory/control law. "Optimization and Optimal Control in Automotive Systems "reflects the state-of-the-art in and promotes a comprehensive approach to optimization in automotive systems by addressing its different facets, by discussing basic methods and showing practical approaches and specific applications of optimization to design and control problems for automotive systems. The book will be of interest both to academic researchers, either studying optimization or who have links with the automotive industry and to industrially-based engineers and automotive designers."
This book offers a first course in analysis for scientists and engineers. It can be used at the advanced undergraduate level or as part of the curriculum in a graduate program. The book is built around metric spaces. In the first three chapters, the authors lay the foundational material and cover the all-important "four-C's": convergence, completeness, compactness, and continuity. In subsequent chapters, the basic tools of analysis are used to give brief introductions to differential and integral equations, convex analysis, and measure theory. The treatment is modern and aesthetically pleasing. It lays the groundwork for the needs of classical fields as well as the important new fields of optimization and probability theory.
This book develops a whole strategy for decision-making, with the full participation of the decision-maker and utilizing continuous feedback. It introduces the use of the very well-known and proven methodology, linear programming, but specially adapted for this purpose. For this, it incorporates a method to include subjective concepts, as well as the possibility of working with many different and even contradictory objectives. The book is liberally populated with diverse case studies to illustrate the concepts. This practical guide will be of interest to anyone undertaking analysis and decision-making, on both simple and complex projects, and who is looking for a strategy to organize, classify, and evaluate the large amount of information required to make an informed decision. The strategy includes methods to analyze the results and extract conclusions from them.
Whether different types of costs are to be reduced, benefits to be maximized or scarce resources to be managed, scheduling theory provides intelligent methods for practitioners and scientists. The just-in-time (JIT) production philosophy has enriched the classical scheduling theory with models that consider characteristics such as inventory costs, set-up times, lot sizing, or maintenance. This edited volume considers the specifics of just-in-time systems. It provides knowledge and insights on recent advances in scheduling theory where just-in-time aspects are considered. Contributions on models, theory, algorithms, and applications, that bring the theory up-to-date on the state-of-the-art of JIT systems are presented. Professionals, researchers and graduate students will find this book useful.
The projectors are considered as simple but important type of matrices and operators. Their basic theory can be found in many books, among which Hal mas [177], [178] are of particular significance. The projectors or projections became an active research area in the last two decades due to ideas generated from linear algebra, statistics and various areas of algorithmic mathematics. There has also grown up a great and increasing number of projection meth ods for different purposes. The aim of this book is to give a unified survey on projectors and projection methods including the most recent results. The words projector, projection and idempotent are used as synonyms, although the word projection is more common. We assume that the reader is familiar with linear algebra and mathemati cal analysis at a bachelor level. The first chapter includes supplements from linear algebra and matrix analysis that are not incorporated in the standard courses. The second and the last chapter include the theory of projectors. Four chapters are devoted to projection methods for solving linear and non linear systems of algebraic equations and convex optimization problems.
The results presented in this book are a product of research conducted by the author independently and in collaboration with other researchers in the field. In this light, this work encompasses the most recent collection of various concepts of regularity and nonsmooth analysis into one monograph. The first part of the book attempts to present an accessible and thorough introduction to nonsmooth analysis theory. Main concepts and some useful results are stated and illustrated through examples and exercises. The second part gathers the most prominent and recent results of various regularity concepts of sets, functions, and set-valued mappings in nonsmooth analysis. The third and final section contains six different application, with comments in relation to the existing literature.
Organisations face many challenges, which induce them to perform better, and thus to establish mature (or excellent) business processes. As they now face globalisation, higher competitiveness, demanding customers, growing IT possibilities, compliancy rules etc., business process maturity models (BPMMs) have been introduced to help organisations gradually assess and improve their business processes (e.g. CMMI or OMG-BPMM). In fact, there are now so many BPMMs to choose from that organisations risk selecting one that does not fit their needs or one of substandard quality. This book presents a study that distinguishes process management from process orientation so as to arrive at a common understanding. It also includes a classification study to identify the capability areas and maturity types of 69 existing BPMMs, in order to strengthen the basis of available BPMMs. Lastly it presents a selection study to identify criteria for choosing one BPMM from the broad selection, which produced a free online selection tool, BPMM Smart-Selector. "
Lectori salutem! The kind reader opens the book that its authors would have liked to read it themselves, but it was not written yet. Then, their only choice was to write this book, to fill a gap in the mathematicalliterature. The idea of convexity has appeared in the human mind since the antiquity and its fertility has led to a huge diversity of notions and of applications. A student intending a thoroughgoing study of convexity has the sensation of swimming into an ocean. It is due to two reasons: the first one is the great number of properties and applications of the classical convexity and second one is the great number of generalisations for various purposes. As a consequence, a tendency of writing huge books guiding the reader in convexity appeared during the last twenty years (for example, the books of P. M. Gruber and J. M. Willis (1993) and R. J. Webster (1994)). Another last years' tendency is to order, from some point of view, as many convexity notions as possible (for example, the book of I. Singer (1997)). These approaches to the domain of convexity follow the previous point of view of axiomatizing it (A. Ghika (1955), W. Prenowitz (1961), D. Voiculescu (1967), V. W. Bryant and R. J. Webster (1969)). Following this last tendency, our book proposes to the reader two classifications of convexity properties for sets, both of them starting from the internal mechanism of defining them.
This book represents the results of cross-fertilization between OR/MS and CS/AI. It is this interface of OR/CS that makes possible advances that could not have been achieved in isolation. Taken collectively, these articles are indicative of the state-of-the-art in the interface between OR/MS and CS/AI and of the high caliber of research being conducted by members of the INFORMS Computing Society.
Rigorous treatments of issues related to congestion pricing are described in this book. It examines recent advances in areas such as mathematical and computational models for predicting traffic congestion, determining when, where, and how much to levy tolls, and analyzing the impact on transportation systems. The book follows recent schemes judged to be successful in London, Singapore, Norway, as well as a number of projects in the United States.
An updated and revised edition of the 1986 title Convexity and Optimization in Banach Spaces, this book provides a self-contained presentation of basic results of the theory of convex sets and functions in infinite-dimensional spaces. The main emphasis is on applications to convex optimization and convex optimal control problems in Banach spaces. A distinctive feature is a strong emphasis on the connection between theory and application. This edition has been updated to include new results pertaining to advanced concepts of subdifferential for convex functions and new duality results in convex programming. The last chapter, concerned with convex control problems, has been rewritten and completed with new research concerning boundary control systems, the dynamic programming equations in optimal control theory and periodic optimal control problems. Finally, the structure of the book has been modified to highlight the most recent progression in the field including fundamental results on the theory of infinite-dimensional convex analysis and includes helpful bibliographical notes at the end of each chapter.
We are rarely asked to. make decisions based on only one criterion; most often, decisions are based on several usually confticting, criteria. In nature, if the design of a system evolves to some final, optimal state, then it must include a balance for the interaction of the system with its surroundings certainly a design based on a variety of criteria. Furthermore, the diversity of nature's designs suggests an infinity of such optimal states. In another sense, decisions simultaneously optimize a finite number of criteria, while there is usually an infinity of optimal solutions. Multicriteria optimization provides the mathematical framework to accommodate these demands. Multicriteria optimization has its roots in mathematical economics, in particular, in consumer economics as considered by Edgeworth and Pareto. The critical question in an exchange economy concerns the "equilibrium point" at which each of N consumers has achieved the best possible deal for hirnself or herself. Ultimately, this is a collective decision in which any further gain by one consumer can occur only at the expense of at least one other consumer. Such an equilibrium concept was first introduced by Edgeworth in 1881 in his book on mathematical psychics. Today, such an optimum is variously called "Pareto optimum" (after the Italian-French welfare economist who continued and expanded Edgeworth's work), "effi. cient," "nondominated," and so on."
An understanding of emergent computation requires a profound revision of the most fundamental ideas. A noticeable attempt of such a rethinking is a world view in which natural systems are seen not as separate entities but as integrated parts of a unified whole. The book for the first time presents such a mathematical structure, which remarkably is based on integers as the single concept. As integers are considered to be the most fundamental entities irreducible to something simpler, this makes the mathematical structure a final theory, and thus we do not have to look for its explanation in terms of deeper concepts. The book is not only applicable to models of computation and optimization but also has scientific consequences, as it contributes to a rethinking of the most fundamental ideas about nature. Audience: The book is written at a level suitable for advanced undergraduate students and graduate students as well as research workers and practitioners in computer science information technology, mathematics and physics. The book is suitable as a reference or as supplementary reading material for an advanced graduate course. Only a basic knowledge of calculus is required.
At the heart of the topology of global optimization lies Morse Theory: The study of the behaviour of lower level sets of functions as the level varies. Roughly speaking, the topology of lower level sets only may change when passing a level which corresponds to a stationary point (or Karush-Kuhn Tucker point). We study elements of Morse Theory, both in the unconstrained and constrained case. Special attention is paid to the degree of differentiabil ity of the functions under consideration. The reader will become motivated to discuss the possible shapes and forms of functions that may possibly arise within a given problem framework. In a separate chapter we show how certain ideas may be carried over to nonsmooth items, such as problems of Chebyshev approximation type. We made this choice in order to show that a good under standing of regular smooth problems may lead to a straightforward treatment of "just" continuous problems by means of suitable perturbation techniques, taking a priori nonsmoothness into account. Moreover, we make a focal point analysis in order to emphasize the difference between inner product norms and, for example, the maximum norm. Then, specific tools from algebraic topol ogy, in particular homology theory, are treated in some detail. However, this development is carried out only as far as it is needed to understand the relation between critical points of a function on a manifold with structured boundary. Then, we pay attention to three important subjects in nonlinear optimization.
Andreas Potschka discusses a direct multiple shooting method for dynamic optimization problems constrained by nonlinear, possibly time-periodic, parabolic partial differential equations. In contrast to indirect methods, this approach automatically computes adjoint derivatives without requiring the user to formulate adjoint equations, which can be time-consuming and error-prone. The author describes and analyzes in detail a globalized inexact Sequential Quadratic Programming method that exploits the mathematical structures of this approach and problem class for fast numerical performance. The book features applications, including results for a real-world chemical engineering separation problem.
This monograph deals with a general class of solution approaches in deterministic global optimization, namely the geometric branch-and-bound methods which are popular algorithms, for instance, in Lipschitzian optimization, d.c. programming, and interval analysis.It also introduces a new concept for the rate of convergence and analyzes several bounding operations reported in the literature, from the theoretical as well as from the empirical point of view. Furthermore, extensions of the prototype algorithm for multicriteria global optimization problems as well as mixed combinatorial optimization problems are considered. Numerical examples based on facility location problems support the theory. Applications of geometric branch-and-bound methods, namely the circle detection problem in image processing, the integrated scheduling and location makespan problem, and the median line location problem in the three-dimensional space are also presented. The book is intended for both researchers and students in the areas of mathematics, operations research, engineering, and computer science.
For both public and private managers, the book Optimization Methods
for a Stakeholder Society is today's key to answer the problem of a
sustainable development world. This world has to take into account
the meaning of all stakeholders involved and has to reconcile a
number of objectives, such as economic growth, employment and
preservation of the ecosystem. Traditional methods, such as
cost-benefit, are outmoded as they translate all these objectives
into monetary costs, a materialistic approach. On the contrary,
objectives have rather to stick to their own units, eventually
indicators.
In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different scenarios of experimental analysis. The first part overviews the main issues in the experimental analysis of algorithms, and discusses the experimental cycle of algorithm development; the second part treats the characterization by means of statistical distributions of algorithm performance in terms of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment of optimization algorithms and, consequently, their design.
Functional analysis owes much of its early impetus to problems that arise in the calculus of variations. In turn, the methods developed there have been applied to optimal control, an area that also requires new tools, such as nonsmooth analysis. This self-contained textbook gives a complete course on all these topics. It is written by a leading specialist who is also a noted expositor. This book provides a thorough introduction to functional analysis and includes many novel elements as well as the standard topics. A short course on nonsmooth analysis and geometry completes the first half of the book whilst the second half concerns the calculus of variations and optimal control. The author provides a comprehensive course on these subjects, from their inception through to the present. A notable feature is the inclusion of recent, unifying developments on regularity, multiplier rules, and the Pontryagin maximum principle, which appear here for the first time in a textbook. Other major themes include existence and Hamilton-Jacobi methods. The many substantial examples, and the more than three hundred exercises, treat such topics as viscosity solutions, nonsmooth Lagrangians, the logarithmic Sobolev inequality, periodic trajectories, and systems theory. They also touch lightly upon several fields of application: mechanics, economics, resources, finance, control engineering. Functional Analysis, Calculus of Variations and Optimal Control is intended to support several different courses at the first-year or second-year graduate level, on functional analysis, on the calculus of variations and optimal control, or on some combination. For this reason, it has been organized with customization in mind. The text also has considerable value as a reference. Besides its advanced results in the calculus of variations and optimal control, its polished presentation of certain other topics (for example convex analysis, measurable selections, metric regularity, and nonsmooth analysis) will be appreciated by researchers in these and related fields.
Experience gained during a ten-year long involvement in modelling, program ming and application in nonlinear optimization helped me to arrive at the conclusion that in the interest of having successful applications and efficient software production, knowing the structure of the problem to be solved is in dispensable. This is the reason why I have chosen the field in question as the sphere of my research. Since in applications, mainly from among the nonconvex optimization models, the differentiable ones proved to be the most efficient in modelling, especially in solving them with computers, I started to deal with the structure of smooth optimization problems. The book, which is a result of more than a decade of research, can be equally useful for researchers and stu dents showing interest in the domain, since the elementary notions necessary for understanding the book constitute a part of the university curriculum. I in tended dealing with the key questions of optimization theory, which endeavour, obviously, cannot bear all the marks of completeness. What I consider the most crucial point is the uniform, differential geometric treatment of various questions, which provides the reader with opportunities for learning the structure in the wide range, within optimization problems. I am grateful to my family for affording me tranquil, productive circumstances. I express my gratitude to F."
In many decision problems, e.g. from the area of production and logistics manage ment, the evaluation of alternatives and the determination of an optimal or at least suboptimal solution is an important but dif?cult task. For most such problems no ef?cient algorithm is known and classical approaches of Operations Research like Mixed Integer Linear Programming or Dynamic Pro gramming are often of limited use due to excessive computation time. Therefore, dedicated heuristic solution approaches have been developed which aim at providing good solutions in reasonable time for a given problem. However, such methods have two major drawbacks: First, they are tailored to a speci?c prob lem and their adaption to other problems is dif?cult and in many cases even impos sible. Second, they are typically designed to "build" one single solution in the most effective way, whereas most decision problems have a vast number of feasible solu tions. Hence usually the chances are high that there exist better ones. To overcome these limitations, problem independent search strategies, in particular metaheuris tics, have been proposed. This book provides an elementary step by step introduction to metaheuristics focusing on the search concepts they are based on. The ?rst part demonstrates un derlying concepts of search strategies using a simple example optimization problem.
Global optimization is one of the fastest developing fields in mathematical optimization. In fact, an increasing number of remarkably efficient deterministic algorithms have been proposed in the last ten years for solving several classes of large scale specially structured problems encountered in such areas as chemical engineering, financial engineering, location and network optimization, production and inventory control, engineering design, computational geometry, and multi-objective and multi-level optimization. These new developments motivated the authors to write a new book devoted to global optimization problems with special structures. Most of these problems, though highly nonconvex, can be characterized by the property that they reduce to convex minimization problems when some of the variables are fixed. A number of recently developed algorithms have been proved surprisingly efficient for handling typical classes of problems exhibiting such structures, namely low rank nonconvex structures. Audience: The book will serve as a fundamental reference book for all those who are interested in mathematical optimization.
Fuzzy geometric programming was originated by the author in the Proceed ing of the second IFSA conferences, 1987(Tokyo) 14 years ago. Later, the paper was invited for formal publication in the International Journal of Fuzzy Sets and Systems. From then on, more and more papers have been written by scholars all over the world who have been interested in its research. So this programming method has been acknowledged by experts and has gradually formed a new branch of fuzzy mathematics. lnspired by Zadeh's fuzzy sets theory, fuzzy geometric programming emerges from the combination of fuzzy sets theory with geometric programming, where models are built in the fuzzy posynomial and the reverse geometric program ming. The present book is intended to discuss fuzziness of objective function and constraint conditions, a variety of fuzzy numbers in coefficients and vari ables and problems about multi-objective fuzzy geometric programming. It establishes and rounds out an entire theory system, showing that there exist conditions of fuzzy optimal or most satisfactory solutions in fuzzy geometric ptogramming, and it develops some effective algorithms. In order to introduce this new branch, the book aims at the exposition of three points: encompassing ideas and conception, theory and methods, and diffusion and application. lt lays more emphasis on the second point than the first one, and less on the third. Besides, it introduces some knowledge of classical geometric programming and of fuzzy sets theory and application examples of fuzzy geometric programming in electric power systems as weil."
Lagrange and penalty function methods provide a powerful approach, both as a theoretical tool and a computational vehicle, for the study of constrained optimization problems. However, for a nonconvex constrained optimization problem, the classical Lagrange primal-dual method may fail to find a mini mum as a zero duality gap is not always guaranteed. A large penalty parameter is, in general, required for classical quadratic penalty functions in order that minima of penalty problems are a good approximation to those of the original constrained optimization problems. It is well-known that penaity functions with too large parameters cause an obstacle for numerical implementation. Thus the question arises how to generalize classical Lagrange and penalty functions, in order to obtain an appropriate scheme for reducing constrained optimiza tion problems to unconstrained ones that will be suitable for sufficiently broad classes of optimization problems from both the theoretical and computational viewpoints. Some approaches for such a scheme are studied in this book. One of them is as follows: an unconstrained problem is constructed, where the objective function is a convolution of the objective and constraint functions of the original problem. While a linear convolution leads to a classical Lagrange function, different kinds of nonlinear convolutions lead to interesting generalizations. We shall call functions that appear as a convolution of the objective function and the constraint functions, Lagrange-type functions.
An effective reliability programme is an essential component of every product's design, testing and efficient production. From the failure analysis of a microelectronic device to software fault tolerance and from the accelerated life testing of mechanical components to hardware verification, a common underlying philosophy of reliability applies. Defining both fundamental and applied work across the entire systems reliability arena, this state-of-the-art reference presents methodologies for quality, maintainability and dependability. Featuring: Contributions from 60 leading reliability experts in academia and industry giving comprehensive and authoritative coverage. A distinguished international Editorial Board ensuring clarity and precision throughout. Extensive references to the theoretical foundations, recent research and future directions described in each chapter. Comprehensive subject index providing maximum utility to the reader. Applications and examples across all branches of engineering including IT, power, automotive and aerospace sectors. The handbook's cross-disciplinary scope will ensure that it serves as an indispensable tool for researchers in industrial, electrical, electronics, computer, civil, mechanical and systems engineering. It will also aid professional engineers to find creative reliability solutions and management to evaluate systems reliability and to improve processes. For student research projects it will be the ideal starting point whether addressing basic questions in communications and electronics or learning advanced applications in micro-electro-mechanical systems (MEMS), manufacturing and high-assurance engineering systems. |
You may like...
Sparse Polynomial Optimization: Theory…
Victor Magron, Jie Wang
Hardcover
R2,132
Discovery Miles 21 320
Computational Optimization Techniques…
Muhammad Sarfraz, Samsul Ariffin Abdul Karim
Hardcover
R3,099
Discovery Miles 30 990
|