![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > General
Shafarevich's Basic Algebraic Geometry has been a classic and
universally used introduction to the subject since its first
appearance over 40 years ago. As the translator writes in a
prefatory note, For all advanced undergraduate and beginning
graduate] students, and for the many specialists in other branches
of math who need a liberal education in algebraic geometry,
Shafarevich s book is a must.'' The third edition, in addition to
some minor corrections, now offers a new treatment of the
Riemann--Roch theorem for curves, including a proof from first
principles.
* Metivier is an expert in the field of pdes/math physics, with a particular emphasis on shock waves. * New monograph focuses on mathematical methods, models, and applications of boundary layers, present in many problems of physics, engineering, fluid mechanics. * Metivier has good Birkhauser track record: one of the main authors of "Advances in the Theory of Shock Waves" (Freistuehler/Szepessy, eds, 4187-4). * Manuscript endorsed by N. Bellomo, MSSET series editor...should be a good sell to members of MSSET community, who by-in-large are based in Europe. * Included are self-contained introductions to different topics such as hyperbolic boundary value problems, parabolic systems, WKB methods, construction of profiles, introduction to the theory of Evans' functions, and energy methods with Kreiss' symmetrizers.
Customarily, much of traditional mathematics curricula was predicated on 'by hand' calculation. However, ubiquitous computing requires us to refresh what we teach and how it is taught. This is especially true in the rapidly broadening fields of Data Mining and Artificial Intelligence, and also in fields such as Bioinformatics, which all require the use of Singular Value Decomposition (SVD). Indeed, SVD is sometimes called the jewel in the crown of linear algebra. Linear Algebra for 21st Century Applications adapts linear algebra to best suit modern teaching and application, and it places the SVD as central to the text early on to empower science and engineering students to learn and use potent practical and theoretical techniques. No rigour is lost in this new route as the text demonstrates that most theory is better proved with an SVD. In addition to this, there is earlier introduction, development, and emphasis on orthogonality that is vital in so many applied disciplines throughout science, engineering, computing and increasingly within the social sciences. To assimilate the so-called third arm of science, namely computing, Matlab/Octave computation is explicitly integrated into developing the mathematical concepts and applications. A strong graphical emphasis takes advantage of the power of visualisation in the human brain and examples are included to exhibit modern applications of linear algebra, such as GPS, text mining, and image processing. Active learning is encouraged with exercises throughout that are aimed to enhance ectures, quizzes, or 'flipped' teaching.
This book discusses group theory investigations of zincblende and wurtzite semiconductors under symmetry-breaking conditions. The text presents the group theory elements required to develop a multitude of symmetry-breaking problems, giving scientists a fast track to bypass the need for recalculating electronic states. The text is not only a valuable resource for speeding up calculations but also illustrates the construction of effective Hamiltonians for a chosen set of electronic states in crystalline semiconductors. Since Hamiltonians have to be invariant under the transformations of the point group, the crystal symmetry determines the multiplet structure of these states in the presence of spin-orbit, crystal-field, or exchange interactions. Symmetry-breaking leads to additional coupling of the states, resulting in shifts and/or splittings of the multiplets. Such interactions may be intrinsic, as in the case of the quasi-particle dispersion, or extrinsic, induced by magnetic, electric, or strain fields. Using a power expansion of the perturbations these interaction terms can be determined in their parameterized form in a unique way. The hierarchic structure of this invariant development allows to estimate the importance of particular symmetry-breaking effects in the Hamiltonian. A number of selected experimental curves are included to illustrate the symmetry-based discussions, which are especially important in optical spectroscopy. This text is written for graduate students and researchers who want to understand and simulate experimental findings reflecting the fine structure of electronic or excitonic states in crystalline semiconductors.
This monographcovers dynamical inverse problems, that is problems whose data are the values of wave fields. It deals with the problem of determination of one or more coefficients of a hyperbolic equation or a system of hyperbolic equations. The desired coefficients are functions of point. Most attention is given to the case where the required functions depend only on one coordinate. The first chapter of the book deals mainly with methods of solution of one-dimensional inverse problems. The second chapter focuses on scalar inverse problems of wave propagation in a layered medium. In the final chapter inverse problems for elasticity equations in stratified media and acoustic equations for moving media are given.
Applied Mathematics: Body & Soul is a mathematics education reform project developed at Chalmers University of Technology and includes a series of volumes and software. The program is motivated by the computer revolution opening new possibilitites of computational mathematical modeling in mathematics, science and engineering. It consists of a synthesis of Mathematical Analysis (Soul), Numerical Computation (Body) and Application. Volumes I-III present a modern version of Calculus and Linear Algebra, including constructive/numerical techniques and applications intended for undergraduate programs in engineering and science. Further volumes present topics such as Dynamical Systems, Fluid Dynamics, Solid Mechanics and Electro-Magnetics on an advanced undergraduate/graduate level. Volume I (Derivatives and Geometry in R3) presents basics of Calculus starting with the construction of the natural, rational, real and complex numbers, and proceeding to analytic geometry in two and three space dimensions, Lipschitz continuous functions and derivatives, together with a variety of applications. Volume II (Integrals and Geomtery in Rn) develops the Riemann integral as the solution to the problem of determining a function given its derivative, and proceeds to generalizations in the form of initial value problems for general systems of ordinary differential equations, including a variety of applications. Linear algebra including numerics is also presented. Volume III (Calculus in Several Dimensions) presents Calculus in several variables including partial derivatives, multi-dimensional integrals, partial differential equations and finite element methods, together with a variety of applications modeled as systems of partial differential equations. The authors are leading researchers in Computational Mathematics who have written various successful books. Further information on Applied Mathematics: Body and Soul can be found at http://www.phi.chalmers.se/bodysoul/.
Fractional evolution equations provide a unifying framework to investigate wellposedness of complex systems with fractional order derivatives. This monograph presents the existence, attractivity, stability, periodic solutions and control theory for time fractional evolution equations. The book contains an up-to-date and comprehensive stuff on the topic.
Econometric theory, as presented in textbooks and the econometric literature generally, is a somewhat disparate collection of findings. Its essential nature is to be a set of demonstrated results that increase over time, each logically based on a specific set of axioms or assumptions, yet at every moment, rather than a finished work, these inevitably form an incomplete body of knowledge. The practice of econometric theory consists of selecting from, applying, and evaluating this literature, so as to test its applicability and range. The creation, development, and use of computer software has led applied economic research into a new age. This book describes the history of econometric computation from 1950 to the present day, based upon an interactive survey involving the collaboration of the many econometricians who have designed and developed this software. It identifies each of the econometric software packages that are made available to and used by economists and econometricians worldwide.
Arguably, many industrial optimization problems are of the
multiobjective type. The present work, after providing a survey of
the state of the art in multiobjective optimization, gives new
insight into this important mathematical field by consequently
taking up the viewpoint of differential geometry. This approach,
unprecedented in the literature, very naturally results in a
generalized homotopy method for multiobjective optimization which
is theoretically well-founded and numerically efficient. The power
of the new method is demonstrated by solving two real-life problems
of industrial optimization.
The main focus of this book is on different topics in probability theory, partial differential equations and kinetic theory, presenting some of the latest developments in these fields. It addresses mathematical problems concerning applications in physics, engineering, chemistry and biology that were presented at the Third International Conference on Particle Systems and Partial Differential Equations, held at the University of Minho, Braga, Portugal in December 2014. The purpose of the conference was to bring together prominent researchers working in the fields of particle systems and partial differential equations, providing a venue for them to present their latest findings and discuss their areas of expertise. Further, it was intended to introduce a vast and varied public, including young researchers, to the subject of interacting particle systems, its underlying motivation, and its relation to partial differential equations. This book will appeal to probabilists, analysts and those mathematicians whose work involves topics in mathematical physics, stochastic processes and differential equations in general, as well as those physicists whose work centers on statistical mechanics and kinetic theory.
This monographdeals with methods of studying multidimensional inverse problems for kinetic and other evolution equations, in particular transfer equations. The methods used are applied to concrete inverse problems, especially multidimensional inverse problems applicable in linear and nonlinear statements. A significant part of the book contains formulas and relations for solving inverse problems, including formulas for the solution and coefficients of kinetic equations, differential-difference equations, nonlinear evolution equations, and second order equations.
Convexity of sets in linear spaces, and concavity and convexity of functions, lie at the root of beautiful theoretical results that are at the same time extremely useful in the analysis and solution of optimization problems, including problems of either single objective or multiple objectives. Not all of these results rely necessarily on convexity and concavity; some of the results can guarantee that each local optimum is also a global optimum, giving these methods broader application to a wider class of problems. Hence, the focus of the first part of the book is concerned with several types of generalized convex sets and generalized concave functions. In addition to their applicability to nonconvex optimization, these convex sets and generalized concave functions are used in the book's second part, where decision-making and optimization problems under uncertainty are investigated. Uncertainty in the problem data often cannot be avoided when dealing with practical problems. Errors occur in real-world data for a host of reasons. However, over the last thirty years, the fuzzy set approach has proved to be useful in these situations. It is this approach to optimization under uncertainty that is extensively used and studied in the second part of this book. Typically, the membership functions of fuzzy sets involved in such problems are neither concave nor convex. They are, however, often quasiconcave or concave in some generalized sense. This opens possibilities for application of results on generalized concavity to fuzzy optimization. Despite this obvious relation, applying the interface of these two areas has been limited to date. It is hoped that the combination of ideas and results from the field of generalized concavity on the one hand and fuzzy optimization on the other hand outlined and discussed in Generalized Concavity in Fuzzy Optimization and Decision Analysis will be of interest to both communities. Our aim is to broaden the classes of problems that the combination of these two areas can satisfactorily address and solve.
This book presents the refereed proceedings of the Twelfth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at Stanford University (California) in August 2016. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising in particular, in finance, statistics, computer graphics and the solution of PDEs.
This book is based on the outcome of the "2012 Interdisciplinary Symposium on Complex Systems" held at the island of Kos. The book consists of 12 selected papers of the symposium starting with a comprehensive overview and classification of complexity problems, continuing by chapters about complexity, its observation, modeling and its applications to solving various problems including real-life applications. More exactly, readers will have an encounter with the structural complexity of vortex flows, the use of chaotic dynamics within evolutionary algorithms, complexity in synthetic biology, types of complexity hidden inside evolutionary dynamics and possible controlling methods, complexity of rugged landscapes, and more. All selected papers represent innovative ideas, philosophical overviews and state-of-the-art discussions on aspects of complexity. The book will be useful as instructional material for senior undergraduate and entry-level graduate students in computer science, physics, applied mathematics and engineering-type work in the area of complexity. The book will also be valuable as a resource of knowledge for practitioners who want to apply complexity to solve real-life problems in their own challenging applications. The authors and editors hope that readers will be inspired to do their own experiments and simulations, based on information reported in this book, thereby moving beyond the scope of the book.
Arc Routing: Theory, Solutions and Applications is about arc traversal and the wide variety of arc routing problems, which has had its foundations in the modern graph theory work of Leonhard Euler. Arc routing methods and computation has become a fundamental optimization concept in operations research and has numerous applications in transportation, telecommunications, manufacturing, the Internet, and many other areas of modern life. The book draws from a variety of sources including the traveling salesman problem (TSP) and graph theory, which are used and studied by operations research, engineers, computer scientists, and mathematicians. In the last ten years or so, there has been extensive coverage of arc routing problems in the research literature, especially from a graph theory perspective; however, the field has not had the benefit of a uniform, systematic treatment. With this book, there is now a single volume that focuses on state-of-the-art exposition of arc routing problems, that explores its graph theoretical foundations, and that presents a number of solution methodologies in a variety of application settings. Moshe Dror has succeeded in working with an elite group of ARC routing scholars to develop the highest quality treatment of the current state-of-the-art in arc routing.
The articles in this volume summarize the research results obtained in the former SFB 359 "Reactive Flow, Diffusion and Transport" which has been supported by the DFG over the period 1993-2004. The main subjects are physical-chemical processes sharing the difficulty of interacting diffusion, transport and reaction which cannot be considered separately. Typical examples are the chemical processes in flow reactors and in the catalytic combustion at surfaces. Further examples are models of star formation including diffusive mass transport, energy radiation and dust formation and the polluting transport in soil and waters. For these complex processes mathematical models are established and numerically simulated. The modeling uses multiscale techniques for nonlinear differential equations while for the numerical simulation and optimization goal-oriented mesh and model adaptivity, multigrid techniques and advanced Newton-type methods are developed combined with parallelization. This modeling and simulation is accompanied by experiments.
The present volume celebrates the 60th birthday of Professor Giovanni Paolo Galdi and honors his remarkable contributions to research in the ?eld of Mathematical Fluid Mechanics. The book contains a collection of 35 peer reviewed papers, with authors from 20 countries, re?ecting the worldwide impact and great inspiration by his work over the years. These papers were selected from invited lectures and contributed talks presented at the International Conference on Mathematical Fluid Mechanics held in Estoril, Portugal, May 21-25, 2007 and organized on the oc- sion of Professor Galdi's 60th birthday. We express our gratitude to all the authors and reviewers for their important contributions. Professor Galdi devotes his career to research on the mathematical analysis of the Navier-Stokes equations and non-Newtonian ?ow problems, with special emphasis on hydrodynamic stability and ?uid-particle interactions, impressing the worldwide mathematical communities with his results. His numerous contributions have laid down signi?cant milestones in these ?elds, with a great in?uence on interdis- plinary research communities. He has advanced the careers of numerous young researchers through his generosity and encouragement, some directly through int- lectual guidance and others indirectly by pairing them with well chosen senior c- laborators. A brief review of Professor Galdi's activities and some impressions by colleagues and friends are included here.
This thesis presents a study of strong stratification and turbulence collapse in the planetary boundary layer, opening a new avenue in this field. It is the first work to study all regimes of stratified turbulence in a unified simulation framework without a break in the paradigms for representation of turbulence. To date, advances in our understanding and the parameterization of turbulence in the stable boundary layer have been hampered by difficulties simulating the strongly stratified regime, and the analysis has primarily been based on field measurements. The content presented here changes that paradigm by demonstrating the ability of direct numerical simulation to address this problem, and by doing so to remove the uncertainty of turbulence models from the analysis. Employing a stably stratified Ekman layer as a simplified physical model of the stable boundary layer, the three stratification regimes observed in nature- weakly, intermediately and strongly stratified-are reproduced, and the data is subsequently used to answer key, long-standing questions. The main part of the book is organized in three sections, namely a comprehensive introduction, numerics, and physics. The thesis ends with a clear and concise conclusion that distills specific implications for the study of the stable boundary layer. This structure emphasizes the physical results, but at the same time gives relevance to the technical aspects of numerical schemes and post-processing tools. The selection of the relevant literature during the introduction, and its use along the work appropriately combines literature from two research communities: fluid dynamics, and boundary-layer meteorology.
The fourth edition of Gene H. Golub and Charles F. Van Loan's classic is an essential reference for computational scientists and engineers in addition to researchers in the numerical linear algebra community. Anyone whose work requires the solution to a matrix problem and an appreciation of its mathematical properties will find this book to be an indispensible tool. This revision is a cover-to-cover expansion and renovation of the third edition. It now includes an introduction to tensor computations and brand new sections on: fast transforms; parallel LU; discrete Poisson solvers; pseudospectra; structured linear equation problems; structured eigenvalue problems; large-scale SVD methods; and, polynomial eigenvalue problems. Matrix Computations is packed with challenging problems, insightful derivations, and pointers to the literature-everything needed to become a matrix-savvy developer of numerical methods and software.
Intended as a textbook for courses in computational fluid dynamics at the senior undergraduate or graduate level, this book is a follow-up to the book Fundamentals of Computational Fluid Dynamics by the same authors, which was published in the series Scientific Computation in 2001. Whereas the earlier book concentrated on the analysis of numerical methods applied to model equations, this new book concentrates on algorithms for the numerical solution of the Euler and Navier-Stokes equations. It focuses on some classical algorithms as well as the underlying ideas based on the latest methods. A key feature of the book is the inclusion of programming exercises at the end of each chapter based on the numerical solution of the quasi-one-dimensional Euler equations and the shock-tube problem. These exercises can be included in the context of a typical course and sample solutions are provided in each chapter, so readers can confirm that they have coded the algorithms correctly.
This thesis details significant improvements in the understanding of the nuclear EMC effect and nuclear shadowing in neutrino physics, and makes substantial comparisons with electron scattering physics. Specifically, it includes the first systematic study of the EMC ratios of carbon, iron and lead to plastic scintillator of neutrinos. The analysis presented provides the best evidence to date that the EMC effect is similar between electrons and neutrinos within the sensitivity of the data. Nuclear shadowing is measured systematically for the first time with neutrinos. In contrast with the data on the EMC effect, the data on nuclear shadowing support the conclusion that nuclear shadowing may be stronger for neutrinos than it is for electrons. This conclusion points to interesting new nuclear physics.
Mathematical modeling and numerical simulation in fluid mechanics are topics of great importance both in theory and technical applications. The present book attempts to describe the current status in various areas of research. The 10 chapters, mostly survey articles, are written by internationally renowned specialists and offer a range of approaches to and views of the essential questions and problems. In particular, the theories of incompressible and compressible Navier-Stokes equations are considered, as well as stability theory and numerical methods in fluid mechanics. Although the book is primarily written for researchers in the field, it will also serve as a valuable source of information to graduate students.
This book discusses the development of a theory of info-statics as a sub-theory of the general theory of information. It describes the factors required to establish a definition of the concept of information that fixes the applicable boundaries of the phenomenon of information, its linguistic structure and scientific applications. The book establishes the definitional foundations of information and how the concepts of uncertainty, data, fact, evidence and evidential things are sequential derivatives of information as the primary category, which is a property of matter and energy. The sub-definitions are extended to include the concepts of possibility, probability, expectation, anticipation, surprise, discounting, forecasting, prediction and the nature of past-present-future information structures. It shows that the factors required to define the concept of information are those that allow differences and similarities to be established among universal objects over the ontological and epistemological spaces in terms of varieties and identities. These factors are characteristic and signal dispositions on the basis of which general definitional foundations are developed to construct the general information definition (GID). The book then demonstrates that this definition is applicable to all types of information over the ontological and epistemological spaces. It also defines the concepts of uncertainty, data, fact, evidence and knowledge based on the GID. Lastly, it uses set-theoretic analytics to enhance the definitional foundations, and shows the value of the theory of info-statics to establish varieties and categorial varieties at every point of time and thus initializes the construct of the theory of info-dynamics.
Propelled by the success of the sequencing of the human and many related genomes, molecular and cellular biology has delivered significant scientific breakthroughs. Mathematics (broadly defined) continues to play a major role in this effort, helping to discover the secrets of life by working collaboratively with bench biologists, chemists and physicists. Because of its outstanding record of interdisciplinary research and training, the IMA was an ideal venue for the 2007-2008 IMA thematic year on Mathematics of Molecular and Cellular Biology. The kickoff event for this thematic year was a tutorial on Mathematics of Nucleic Acids, followed by the workshop Mathematics of Molecular and Cellular Biology, held September 15--21 at the IMA. This volume is dedicated to the memory of Nicholas R. Cozzarelli, a dynamic leader who fostered research and training at the interface between mathematics and molecular biology. It contains a personal remembrance of Nick Cozzarelli, plus 15 papers contributed by workshop speakers. The papers give an overview of state-of-the-art mathematical approaches to the understanding of DNA structure and function, and the interaction of DNA with proteins that mediate vital life processes. |
You may like...
Infinite Words, Volume 141 - Automata…
Dominique Perrin, Jean-Eric Pin
Hardcover
R4,065
Discovery Miles 40 650
Multiscale Modeling of Vascular Dynamics…
Huilin Ye, Zhiqiang Shen, …
Paperback
R750
Discovery Miles 7 500
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
|