![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > General
With the growing use of information technology and the recent advances in web systems, the amount of data available to users has increased exponentially. Thus, there is a critical need to understand the content of the data. As a result, data-mining has become a popular research topic in recent years for the treatment of the "data rich and information poor" syndrome. In this carefully edited volume a theoretical foundation as well as important new directions for data-mining research are presented. It brings together a set of well respected data mining theoreticians and researchers with practical data mining experiences. The presented theories will give data mining practitioners a scientific perspective in data mining and thus provide more insight into their problems, and the provided new data mining topics can be expected to stimulate further research in these important directions.
In t.lw fHll of !!)!)2, Professor Dr. M. Alt.ar, chairman of tIw newly established dppartnwnt or Managenwnt. wit.h Comput.er Science at thp Homanian -American Univprsity in Bucharest (a private univprsil.y), inl.roducod in t.he curriculum a course on DiffenHltial Equations and Optimal Cont.rol, asking lIS to teach such course. It was an inter8sting challengo, since for t.Iw first tim8 wo had to t8ach such mathemaLical course for st.udents with economic background and interosts. It was a natural idea to sl.m't by looking at pconomic models which were described by differpntial equations and for which problems in (\pcision making dir! ariso. Since many or such models were r!escribed in discret.e timp, wp eleculed to elpvolop in parallel t.he theory of differential equations anel thaI, of discrete-timo systpms aur! also control theory in continuous and discrete time. Tlw jll'eSPlu book is t.he result of our tpaehing px!wripnce wit.h this courge. It is an enlargud version of t.he actllal lectuf(~s where, depending on t.he background of tho St.lI(\('Ilts, not all proofs could be given in detail. We would like to express our grat.itude to tlw Board of the Romanian - American University, personally 1. 0 the Rector, Professor Dr. Ion Smedpscu, for support, encouragement and readinpss to accept advancnd ideas in tho curriculum. fhe authors express t.heir warmest thanks 1.0 Mrs. Monica Stan . Necula for tho oxcellent procC'ssing of t.he manuscript.
One of the main problems in control theory is the stabilization problem consisting of finding a feedback control law ensuring stability; when the linear approximation is considered, the nat ural problem is stabilization of a linear system by linear state feedback or by using a linear dynamic controller. This prob lem was intensively studied during the last decades and many important results have been obtained. The present monograph is based mainly on results obtained by the authors. It focuses on stabilization of systems with slow and fast motions, on stabilization procedures that use only poor information about the system (high-gain stabilization and adaptive stabilization), and also on discrete time implementa tion of the stabilizing procedures. These topics are important in many applications of stabilization theory. We hope that this monograph may illustrate the way in which mathematical theories do influence advanced technol ogy. This book is not intended to be a text book nor a guide for control-designers. In engineering practice, control-design is a very complex task in which stability is only one of the re quirements and many aspects and facets of the problem have to be taken into consideration. Even if we restrict ourselves to stabilization, the book does not provide just recipes, but it fo cuses more on the ideas lying behind the recipes. In short, this is not a book on control, but on some mathematics of control."
This volume presents an eclectic mix of original research articles in areas covering the analysis of ordered data, stochastic modeling and biostatistics. These areas were featured in a conference held at the University of Texas at Dallas from March 7 to 9, 2014 in honor of Professor H. N. Nagaraja's 60th birthday and his distinguished contributions to statistics. The articles were written by leading experts who were invited to contribute to the volume from among the conference participants. The volume is intended for all researchers with an interest in order statistics, distribution theory, analysis of censored data, stochastic modeling, time series analysis, and statistical methods for the health sciences, including statistical genetics.
Classical Mechanics teaches readers how to solve physics problems; in other words, how to put math and physics together to obtain a numerical or algebraic result and then interpret these results physically. These skills are important and will be needed in more advanced science and engineering courses. However, more important than developing problem-solving skills and physical-interpretation skills, the main purpose of this multi-volume series is to survey the basic concepts of classical mechanics and to provide the reader with a solid understanding of the foundational content knowledge of classical mechanics. Classical Mechanics: Newton's Laws and Uniform Circular Motion focuses on the question: 'Why does an object move?'. To answer that question, we turn to Isaac Newton. The hallmark of any good introductory physics series is its treatment of Newton's laws of motion. These laws are difficult concepts for most readers for a number of reasons: they have a reputation as being difficult concepts; they require the mastery of multiple sub-skills; and problems involving these laws can be cast in a variety of formats.
This book describes the inferential and modeling advantages that this distribution, together with its generalizations and modifications, offers. The exposition systematically unfolds with many examples, tables, illustrations, and exercises. A comprehensive index and extensive bibliography also make this book an ideal text for a senior undergraduate and graduate seminar on statistical distributions, or for a short half-term academic course in statistics, applied probability, and finance.
This monograph aims to promote original mathematical methods to determine the invariant measure of two-dimensional random walks in domains with boundaries. Such processes arise in numerous applications and are of interest in several areas of mathematical research, such as Stochastic Networks, Analytic Combinatorics, and Quantum Physics. This second edition consists of two parts. Part I is a revised upgrade of the first edition (1999), with additional recent results on the group of a random walk. The theoretical approach given therein has been developed by the authors since the early 1970s. By using Complex Function Theory, Boundary Value Problems, Riemann Surfaces, and Galois Theory, completely new methods are proposed for solving functional equations of two complex variables, which can also be applied to characterize the Transient Behavior of the walks, as well as to find explicit solutions to the one-dimensional Quantum Three-Body Problem, or to tackle a new class of Integrable Systems. Part II borrows special case-studies from queueing theory (in particular, the famous problem of Joining the Shorter of Two Queues) and enumerative combinatorics (Counting, Asymptotics). Researchers and graduate students should find this book very useful.
This book presents the latest results related to shells characterize and design shells, plates, membranes and other thin-walled structures, a multidisciplinary approach from macro- to nanoscale is required which involves the classical disciplines of mechanical/civil/materials engineering (design, analysis, and properties) and physics/biology/medicine among others. The book contains contributions of a meeting of specialists (mechanical engineers, mathematicians, physicists and others) in such areas as classical and non-classical shell theories. New trends with respect to applications in mechanical, civil and aero-space engineering, as well as in new branches like medicine and biology are presented which demand improvements of the theoretical foundations of these theories and a deeper understanding of the material behavior used in such structures.
"Decision Systems and Non-stochastic Randomness" is the first systematic presentation and mathematical formalization (including existence theorems) of the statistical regularities of non-stochastic randomness. The results presented in this book extend the capabilities of probability theory by providing mathematical techniques that allow for the description of uncertain events that do not fit standard stochastic models. The book demonstrates how non-stochastic regularities can be incorporated into decision theory and information theory, offering an alternative to the subjective probability approach to uncertainty and the unified approach to the measurement of information. This book is intended for statisticians, mathematicians, engineers, economists or other researchers interested in non-stochastic modeling and decision theory.
Automata Theory and Formal Languages: Concepts and Practices presents the difficult concepts of automata theory in a straightforward manner, including discussions on diverse concepts and tools that play major roles in developing computing machines, algorithms and code. Automata theory includes numerous concepts such as finite automata, regular grammar, formal languages, context free and context sensitive grammar, push down automata, Turing machine, and decidability, which constitute the backbone of computing machines. This book enables readers to gain sufficient knowledge and experience to construct and solve complex machines. Each chapter begins with key concepts followed by a number of important examples that demonstrate the solution. The book explains concepts and simultaneously helps readers develop an understanding of their application with real-world examples, including application of Context Free Grammars in programming languages and Artificial Intelligence, and cellular automata in biomedical problems.
This edited book is dedicated to Professor N. U. Ahmed, a leading scholar and a renowned researcher in optimal control and optimization on the occasion of his retirement from the Department of Electrical Engineering at University of Ottawa in 1999. The contributions of this volume are in the areas of optimal control, non linear optimization and optimization applications. They are mainly the im proved and expanded versions of the papers selected from those presented in two special sessions of two international conferences. The first special session is Optimization Methods, which was organized by K. L. Teo and X. Q. Yang for the International Conference on Optimization and Variational Inequality, the City University of Hong Kong, Hong Kong, 1998. The other one is Optimal Control, which was organized byK. Teo and L. Caccetta for the Dynamic Control Congress, Ottawa, 1999. This volume is divided into three parts: Optimal Control; Optimization Methods; and Applications. The Optimal Control part is concerned with com putational methods, modeling and nonlinear systems. Three computational methods for solving optimal control problems are presented: (i) a regularization method for computing ill-conditioned optimal control problems, (ii) penalty function methods that appropriately handle final state equality constraints, and (iii) a multilevel optimization approach for the numerical solution of opti mal control problems. In the fourth paper, the worst-case optimal regulation involving linear time varying systems is formulated as a minimax optimal con trol problem."
Internet is starting to permeate politics much as it has previously revolutionised education, business or the arts. Thus, there is a growing interest in areas of e-government and, more recently, e-democracy. However, most attempts in this field have just envisioned standard political approaches facilitated by technology, like e-voting or e-debating. Alternatively, we could devise a more transforming strategy based on deploying web based group decision support tools and promote their use for public policy decision making. This book delineates how this approach could be implemented. It addresses foundations, basic methodologies, potential implementation and applications, together with a thorough discussion of the many challenging issues. This innovative text will be of interest to students, researchers and practitioners in the fields of e-government, e-democracy and e-participation and research in decision analysis, negotiation analysis and group decision support.
This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of stochastic reaction-diffusion models, while in the latter, one can describe the processes by adopting the framework of Markov jump processes and stochastic differential equations. Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology will appeal to graduate students and researchers in the fields of applied mathematics, biophysics, and cellular biology.
This thirteenth volume of the Poincare Seminar Series, Henri Poincare, 1912-2012, is published on the occasion of the centennial of the death of Henri Poincare in 1912. It presents a scholarly approach to Poincare's genius and creativity in mathematical physics and mathematics. Its five articles are also highly pedagogical, as befits their origin in lectures to a broad scientific audience. Highlights include "Poincare's Light" by Olivier Darrigol, a leading historian of science, who uses light as a guiding thread through much of Poincare 's physics and philosophy, from the application of his superior mathematical skills and the theory of diffraction to his subsequent reflections on the foundations of electromagnetism and the electrodynamics of moving bodies; the authoritative "Poincare and the Three-Body Problem" by Alain Chenciner, who offers an exquisitely detailed, hundred-page perspective, peppered with vivid excerpts from citations, on the monumental work of Poincare on this subject, from the famous (King Oscar's) 1889 memoir to the foundations of the modern theory of chaos in "Les methodes nouvelles de la mecanique celeste." A profoundly original and scholarly presentation of the work by Poincare on probability theory is given by Laurent Mazliak in "Poincare's Odds," from the incidental first appearance of the word "probability" in Poincare's famous 1890 theorem of recurrence for dynamical systems, to his later acceptance of the unavoidability of probability calculus in Science, as developed to a great extent by Emile Borel, Poincare's main direct disciple; the article by Francois Beguin, "Henri Poincare and the Uniformization of Riemann Surfaces," takes us on a fascinating journey through the six successive versions in twenty-six years of the celebrated uniformization theorem, which exemplifies the Master's distinctive signature in the foundational fusion of mathematics and physics, on which conformal field theory, string theory and quantum gravity so much depend nowadays; the final chapter, "Harmony and Chaos, On the Figure of Henri Poincare" by the filmmaker Philippe Worms, describes the homonymous poetical film in which eminent scientists, through mathematical scenes and physical experiments, display their emotional relationship to the often elusive scientific truth and universal "harmony and chaos" in Poincare's legacy. This book will be of broad general interest to physicists, mathematicians, philosophers of science and historians.
Techniques of physics find wide application in biology, medicine, engineering and technology generally. This series is devoted to techniques which have found and are finding application. The aim is to clarify the principles of each technique, to emphasize and illustrate the applications and to draw attention to new fields of possible employment.
A long-standing unsolved problem in economic theory is how economic equilibria are attained. Price Dynamics in Equilibrium Models: The Search for Equilibrium and the Emergence of Endogenous Fluctuations considers a number of adjustment processes in different economic models and investigates their dynamical behaviour. Two important themes arising in this context are bounded rationality' and nonlinear dynamics'. Important sub-themes of the book are the following: how do boundedly rational agents interact with their environment and does this interaction in some sense lead to rational outcomes (which may or may not correspond to equilibria)? The second sub-theme deals with the consequences of the nonlinear dynamical nature of many adjustment processes. The results presented in this volume indicate that endogenous fluctuations are the rule rather than the exception in the search for equilibrium. The book uses the theory of nonlinear dynamics to analyze the dynamics of the different economic models. Due to the complexity of most of the models, an important role is played by computational methods. In particular, at regular instances the models are analyzed by numerical simulations and some computer-assisted proofs are provided. It also covers a wide range of dynamical models from economic theory. Most of these models merge the theory of nonlinear economic dynamics with the theory of bounded rationality. The book is written for anyone with an interest in economic theory in general and bounded rationality and endogenous fluctuations in particular. It is entirely self-contained and accessible to readers with only a limited knowledge of economic theory.
Con?gurational mechanics has attracted quite a bit of attention from various - search ?elds over the recent years/decades. Having been regarded in its infancy of the early years as a somewhat obscureand almost mystic ?eld of researchthat could only be understood by a happy few of insiders with a pronounced theoretical inc- nation, con?gurational mechanics has developed by now into a versatile tool that can be applied to a variety of problems. Since the seminal works of Eshelby a general notion of con?gurational - chanics has been developed and has successfully been applied to many pr- lems involving various types of defects in continuous media. The most pro- nent application is certainly the use of con?gurational forces in fracture - chanics. However, as con?gurational mechanics is related to arbitrary mat- ial inhomogeneities it has also very successfully been applied to many ma- rials science and engineering problems such as phase transitions and inelastic deformations. Also the modeling of materials with micro-structure evolution is an important ?eld, in which con?gurational mechanics can provide a better understanding of processes going on within the material. Besides these mechanically, physically, and chemically motivated applications, ideas from con?gurational mechanics are now increasingly applied within computational mechanics.
Hans Duistermaat, an influential geometer-analyst, made substantial contributions to the theory of ordinary and partial differential equations, symplectic, differential, and algebraic geometry, minimal surfaces, semisimple Lie groups, mechanics, mathematical physics, and related fields. Written in his honor, the invited and refereed articles in this volume contain important new results as well as surveys in some of these areas, clearly demonstrating the impact of Duistermaat's research and, in addition, exhibiting interrelationships among many of the topics.
Praise for EVIDENCE-BASED TECHNICAL ANALYSIS "In clear language, Aronson demonstrates the theoretical flaws
in interpretative technical analysis methodologies, the flawed
premises and conclusions of the Efficient Market Hypothesis, and
the appropriate techniques for developing and testing technical
analysis methods that do have validity. Readers will learn a lot
from this book." "Aronson's explanation of data mining is a must-read for every
analyst, and his overall discussion of statistical inference is
critical to success. The book is filled with commonsense examples
and provides a testing and validation process that saves time,
frustration, and money." "This book debunks many of the myths of technical analysis. One
should read this book before buying a technical system. The book is
a good reference to the literature on the subject with extensive
footnotes and bibliography." "You may not agree with everything David Aronson says in this
controversial, but compelling new study. Still, every trader who
wants to invest technical analysis with the dignity of a great
science should read this discerning account." "There are illusions of the mind that are every bit as real as
optical illusions. Aronson's criticisms of popular forms of
technical analysis are right on target."
Recently, a variety ofresults on the complexitystatusofthegraph isomorphism problem has been obtained. These results belong to the so-called structural part of Complexity Theory. Our idea behind this book is to summarize such results which might otherwise not be easily accessible in the literature, and also, to give the reader an understanding of the aims and topics in Structural Complexity Theory, in general. The text is basically self contained; the only prerequisite for reading it is some elementary knowledge from Complexity Theory and Probability Theory. It can be used to teach a seminar or a monographic graduate course, but also parts of it (especially Chapter 1) provide a source of examples for a standard graduate course on Complexity Theory. Many people have helped us in different ways III the process of writing this book. Especially, we would like to thank V. Arvind, R.V. Book, E. May ordomo, and the referee who gave very constructive comments. This book project was especially made possible by a DAAD grant in the "Acciones In tegrada" program. The third author has been supported by the ESPRIT project ALCOM-II."
This volume contains several surveys focused on the ideas of approximate solutions, well-posedness and stability of problems in scalar and vector optimization, game theory and calculus of variations. These concepts are of particular interest in many fields of mathematics. The idea of stability goes back at least to J. Hadamard who introduced it in the setting of differential equations; the concept of well-posedness for minimum problems is more recent (the mid-sixties) and originates with A.N. Tykhonov. It turns out that there are connections between the two properties in the sense that a well-posed problem which, at least in principle, is "easy to solve," has a solution set that does not vary too much under perturbation of the data of the problem, i.e. it is "stable." These themes have been studied in depth for minimum problems and now we have a general picture of the related phenomena in this case. But, of course, the same concepts can be studied in other more complicated situations as, e.g. vector optimization, game theory and variational inequalities. Let us mention that in several of these new areas there is not even a unique idea of what should be called approximate solution, and the latter is at the basis of the definition of well posed problem."
Introduction to Large Truncated Toeplitz Matrices is a text on the application of functional analysis and operator theory to some concrete asymptotic problems of linear algebra. The book contains results on the stability of projection methods, deals with asymptotic inverses and Moore-Penrose inversion of large Toeplitz matrices, and embarks on the asymptotic behavoir of the norms of inverses, the pseudospectra, the singular values, and the eigenvalues of large Toeplitz matrices. The approach is heavily based on Banach algebra techniques and nicely demonstrates the usefulness of C*-algebras and local principles in numerical analysis. The book includes classical topics as well as results obtained and methods developed only in the last few years. Though employing modern tools, the exposition is elementary and aims at pointing out the mathematical background behind some interesting phenomena one encounters when working with large Toeplitz matrices. The text is accessible to readers with basic knowledge in functional analysis. It is addressed to graduate students, teachers, and researchers with some inclination to concrete operator theory and should be of interest to everyone who has to deal with infinite matrices (Toeplitz or not) and their large truncations.
An increasing body of literature concerns the economics of those highly appreciated qualities of life that are not easily provided by market exchange. Today these problems are visible as never before, for example environmental problems. But already at the dawn of industrial society the problem had been observed by Rousseau. His statements on the economy claim to take these problems into account with due importance. In this way his economic philosophy concerns a different domain of the economy from, for example, Adam Smith's work. Rousseau's philosophy attempts to consider phenomena later labeled information asymmetries and information costs, bargaining, collective good problems. Some of Rousseau's most puzzling social proposals (on theater, women, music, etc.) can be explained by his well-argued conviction that an optimal economy demands a high social morale, a communicative morale. He proposes an economic philosophy for the most important properties of richness - such as experiencing the unique, and being free although dependent on others (empowerment). It is for the adult capable of true deliberation, not for the trifle of the innocent child. He develops a concept of richness that is close to the Aristotelian capability-concept, later explored by Amartya Sen. Rousseau's economic philosophy has not been treated in a monograph before. The book should be rewarding to those interested in social theory, the history of social and economic thought, problems at the margins of market exchange, e.g. cultural economics, environmental economics, students of Rousseau and the thought of the 18th century, welfare economic theory in the direction of Arrow or Sen, and Poanyi's and others' theses about the transition from selfsufficiency to market. |
You may like...
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
Multiscale Modeling of Vascular Dynamics…
Huilin Ye, Zhiqiang Shen, …
Paperback
R750
Discovery Miles 7 500
Infinite Words, Volume 141 - Automata…
Dominique Perrin, Jean-Eric Pin
Hardcover
R4,065
Discovery Miles 40 650
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
|