![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > General
The problems of conditional optimization of the uniform (or C-) norm for polynomials and rational functions arise in various branches of science and technology. Their numerical solution is notoriously difficult in case of high degree functions. The book develops the classical Chebyshev's approach which gives analytical representation for the solution in terms of Riemann surfaces. The techniques born in the remote (at the first glance) branches of mathematics such as complex analysis, Riemann surfaces and Teichmuller theory, foliations, braids, topology are applied to approximation problems. The key feature of this book is the usage of beautiful ideas of contemporary mathematics for the solution of applied problems and their effective numerical realization. This is one of the few books where the computational aspects of the higher genus Riemann surfaces are illuminated. Effective work with the moduli spaces of algebraic curves provides wide opportunities for numerical experiments in mathematics and theoretical physics.
This book is devoted to current advances in the field of nonlinear mathematical physics and modeling of critical phenomena that can lead to catastrophic events. Pursuing a multidisciplinary approach, it gathers the work of scientists who are developing mathematical and computational methods for the study and analysis of nonlinear phenomena and who are working actively to apply these tools and create conditions to mitigate and reduce the negative consequences of natural and socio-economic disaster risk. This book summarizes the contributions of the International School and Workshop on Nonlinear Mathematical Physics and Natural Hazards, organized within the framework of the South East Europe Network in Mathematical and Theoretical Physics (SEENET MTP) and supported by UNESCO. It was held at the Bulgarian Academy of Sciences from November 28 to December 2, 2013. The contributions are divided into two major parts in keeping with the scientific program of the meeting. Among the topics covered in Part I (Nonlinear Mathematical Physics towards Critical Phenomena) are predictions and correlations in self organized criticality, space-time structure of extreme current and activity events in exclusion processes, quantum spin chains and integrability of many-body systems, applications of discriminantly separable polynomials, MKdV-type equations, and chaotic behavior in Yang-Mills theories. Part II (Seismic Hazard and Risk) is devoted to probabilistic seismic hazard assessment, seismic risk mapping, seismic monitoring, networking and data processing in Europe, mainly in South-East Europe. The book aims to promote collaboration at the regional and European level to better understand and model phenomena that can cause natural and socio-economic disasters, and to contribute to the joint efforts to mitigate the negative consequence of natural disasters. This collection of papers reflects contemporary efforts on capacity building through developing skills, exchanging knowledge and practicing mathematical methods for modeling nonlinear phenomena, disaster risk preparedness and natural hazards mitigation. The target audience includes students and researchers in mathematical and theoretical physics, earth physics, applied physics, geophysics, seismology and earthquake danger and risk mitigation.
Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches covers recent developments in optimization techniques for addressing several computational chemistry and biology problems. A tantalizing problem that cuts across the fields of computational chemistry, biology, medicine, engineering and applied mathematics is how proteins fold. Global and local optimization provide a systematic framework of conformational searches for the prediction of three-dimensional protein structures that represent the global minimum free energy, as well as low-energy biomolecular conformations. Each contribution in the book is essentially expository in nature, but of scholarly treatment. The topics covered include advances in local and global optimization approaches for molecular dynamics and modeling, distance geometry, protein folding, molecular structure refinement, protein and drug design, and molecular and peptide docking. Audience: The book is addressed not only to researchers in mathematical programming, but to all scientists in various disciplines who use optimization methods in solving problems in computational chemistry and biology.
This book focuses on problems at the interplay between the theory of partitions and optimal transport with a view toward applications. Topics covered include problems related to stable marriages and stable partitions, multipartitions, optimal transport for measures and optimal partitions, and finally cooperative and noncooperative partitions. All concepts presented are illustrated by examples from game theory, economics, and learning.
Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a wide range of actual real world applications. The theoretical material and applications place special stress on interactive decision-making aspects of fuzzy multiobjective optimization for human-centered systems in most realistic situations when dealing with fuzziness. The intended readers of this book are senior undergraduate students, graduate students, researchers, and practitioners in the fields of operations research, computer science, industrial engineering, management science, systems engineering, and other engineering disciplines that deal with the subjects of multiobjective programming for discrete or other hard optimization problems under fuzziness. Real world research applications are used throughout the book to illustrate the presentation. These applications are drawn from complex problems. Examples include flexible scheduling in a machine center, operation planning of district heating and cooling plants, and coal purchase planning in an actual electric power plant.
Practical quantum computing still seems more than a decade away, and researchers have not even identified what the best physical implementation of a quantum bit will be. There is a real need in the scientific literature for a dialogue on the topic of lessons learned and looming roadblocks. This reprint from Quantum Information Processing is dedicated to the experimental aspects of quantum computing and includes articles that 1) highlight the lessons learned over the last 10 years, and 2) outline the challenges over the next 10 years. The special issue includes a series of invited articles that discuss the most promising physical implementations of quantum computing. The invited articles were to draw grand conclusions about the past and speculate about the future, not just report results from the present.
The scientific monograph of a survey kind presented to the reader's attention deals with fundamental ideas and basic schemes of optimization methods that can be effectively used for solving strategic planning and operations manage ment problems related, in particular, to transportation. This monograph is an English translation of a considerable part of the author's book with a similar title that was published in Russian in 1992. The material of the monograph embraces methods of linear and nonlinear programming; nonsmooth and nonconvex optimization; integer programming, solving problems on graphs, and solving problems with mixed variables; rout ing, scheduling, solving network flow problems, and solving the transportation problem; stochastic programming, multicriteria optimization, game theory, and optimization on fuzzy sets and under fuzzy goals; optimal control of systems described by ordinary differential equations, partial differential equations, gen eralized differential equations (differential inclusions), and functional equations with a variable that can assume only discrete values; and some other methods that are based on or adjoin to the listed ones."
This unique book on the subject addresses fundamental problems and will be the standard reference for a long time to come. The authors have different scientific origins and combine these successfully, creating a text aimed at graduate students and researchers that can be used for courses and seminars.
After A. Ungar had introduced vector algebra and Cartesian coordinates into hyperbolic geometry in his earlier books, along with novel applications in Einstein's special theory of relativity, the purpose of his new book is to introduce hyperbolic barycentric coordinates, another important concept to embed Euclidean geometry into hyperbolic geometry. It will be demonstrated that, in full analogy to classical mechanics where barycentric coordinates are related to the Newtonian mass, barycentric coordinates are related to the Einsteinian relativistic mass in hyperbolic geometry. Contrary to general belief, Einstein's relativistic mass hence meshes up extraordinarily well with Minkowski's four-vector formalism of special relativity. In Euclidean geometry, barycentric coordinates can be used to determine various triangle centers. While there are many known Euclidean triangle centers, only few hyperbolic triangle centers are known, and none of the known hyperbolic triangle centers has been determined analytically with respect to its hyperbolic triangle vertices. In his recent research, the author set the ground for investigating hyperbolic triangle centers via hyperbolic barycentric coordinates, and one of the purposes of this book is to initiate a study of hyperbolic triangle centers in full analogy with the rich study of Euclidean triangle centers. Owing to its novelty, the book is aimed at a large audience: it can be enjoyed equally by upper-level undergraduates, graduate students, researchers and academics in geometry, abstract algebra, theoretical physics and astronomy. For a fruitful reading of this book, familiarity with Euclidean geometry is assumed. Mathematical-physicists and theoretical physicists are likely to enjoy the study of Einstein's special relativity in terms of its underlying hyperbolic geometry. Geometers may enjoy the hunt for new hyperbolic triangle centers and, finally, astronomers may use hyperbolic barycentric coordinates in the velocity space of cosmology.
This volume of High Performance Computing in Science and Engineering is fully dedicated to the final report of KONWIHR, the Bavarian Competence Network for Technical and Scientific High Performance Computing. It includes the transactions of the final KONWIHR workshop, that was held at Technische Universitat Munchen, October 14-15, 2004, as well as additional reports of KONWIHR research groups. KONWIHR was established by the Bavarian State Government in order to support the broad application of high performance computing in science and technology throughout the country. KONWIHR is a supporting action to the installation of the German supercomputer Hitachi SR 8000 in the Leibniz Computing Center of the Bavarian Academy of Sciences. The report covers projects from basic research in computer science to develop tools for high performance computing as well as applications from biology, chemistry, electrical engineering, geology, mathematics, physics, computational fluid dynamics, materials science and computer science."
This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element and finite volume methods, interweaving theory and applications throughout. Extensive exercises are provided throughout the text. Graduate students in mathematics, engineering and physics will find this book useful.
This interdisciplinary thesis involves the design and analysis of coordination algorithms on networks, identification of dynamic networks and estimation on networks with random geometries with implications for networks that support the operation of dynamic systems, e.g., formations of robotic vehicles, distributed estimation via sensor networks. The results have ramifications for fault detection and isolation of large-scale networked systems and optimization models and algorithms for next generation aircraft power systems. The author finds novel applications of the methodology in energy systems, such as residential and industrial smart energy management systems.
This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is kept as low as at all possible and deeper questions related to the mathematical foundations of scattering theory are passed by. It should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. The book is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.
Emergent Computation emphasizes the interrelationship of the different classes of languages studied in mathematical linguistics (regular, context-free, context-sensitive, and type 0) with aspects to the biochemistry of DNA, RNA, and proteins. In addition, aspects of sequential machines such as parity checking and semi-groups are extended to the study of the Biochemistry of DNA, RNA, and proteins. Mention is also made of the relationship of algebraic topology, knot theory, complex fields, quaternions, and universal turing machines and the biochemistry of DNA, RNA, and proteins. Emergent Computation tries to avoid an emphasis upon mathematical abstraction ("elegance") at the expense of ignoring scientific facts known to Biochemists. Emergent Computation is based entirely upon papers published by scientists in well-known and respected professional journals. These papers are based upon current research. A few examples of what is not ignored to gain "elegance": - DNA exists as triple and quadruple strands - Watson-Crick complementary bases have mismatches - There can be more than four bases in DNA - There are more than sixty-four codons - There may be more that twenty amino acids in proteins While Emergent Computation emphasizes bioinformatics applications, the last chapter studies mathematical linguistics applied to areas such as languages found in birds, insects, medical applications, anthropology, etc. Emergent Computation tries to avoid unnecessary mathematical abstraction while still being rigorous. The demands made upon the knowledge of chemistry or mathematics is minimized as well. The collected technical references are valuable in itself for additional reading.
Many questions dealing with solvability, stability and solution methods for va- ational inequalities or equilibrium, optimization and complementarity problems lead to the analysis of certain (perturbed) equations. This often requires a - formulation of the initial model being under consideration. Due to the specific of the original problem, the resulting equation is usually either not differ- tiable (even if the data of the original model are smooth), or it does not satisfy the assumptions of the classical implicit function theorem. This phenomenon is the main reason why a considerable analytical inst- ment dealing with generalized equations (i.e., with finding zeros of multivalued mappings) and nonsmooth equations (i.e., the defining functions are not c- tinuously differentiable) has been developed during the last 20 years, and that under very different viewpoints and assumptions. In this theory, the classical hypotheses of convex analysis, in particular, monotonicity and convexity, have been weakened or dropped, and the scope of possible applications seems to be quite large. Briefly, this discipline is often called nonsmooth analysis, sometimes also variational analysis. Our book fits into this discipline, however, our main intention is to develop the analytical theory in close connection with the needs of applications in optimization and related subjects. Main Topics of the Book 1. Extended analysis of Lipschitz functions and their generalized derivatives, including "Newton maps" and regularity of multivalued mappings. 2. Principle of successive approximation under metric regularity and its - plication to implicit functions.
Since I started working in the area of nonlinear programming and, later on, variational inequality problems, I have frequently been surprised to find that many algorithms, however scattered in numerous journals, monographs and books, and described rather differently, are closely related to each other. This book is meant to help the reader understand and relate algorithms to each other in some intuitive fashion, and represents, in this respect, a consolidation of the field. The framework of algorithms presented in this book is called Cost Approxi mation. (The preface of the Ph.D. thesis Pat93d] explains the background to the work that lead to the thesis, and ultimately to this book.) It describes, for a given formulation of a variational inequality or nonlinear programming problem, an algorithm by means of approximating mappings and problems, a principle for the update of the iteration points, and a merit function which guides and monitors the convergence of the algorithm. One purpose of this book is to offer this framework as an intuitively appeal ing tool for describing an algorithm. One of the advantages of the framework, or any reasonable framework for that matter, is that two algorithms may be easily related and compared through its use. This framework is particular in that it covers a vast number of methods, while still being fairly detailed; the level of abstraction is in fact the same as that of the original problem statement."
This is a textbook for a course (or self-instruction) in cryptography with emphasis on algebraic methods. The first half of the book is a self-contained informal introduction to areas of algebra, number theory, and computer science that are used in cryptography. Most of the material in the second half - "hidden monomial" systems, combinatorial-algebraic systems, and hyperelliptic systems - has not previously appeared in monograph form. The Appendix by Menezes, Wu, and Zuccherato gives an elementary treatment of hyperelliptic curves. This book is intended for graduate students, advanced undergraduates, and scientists working in various fields of data security.
The conference Operator Theory, Analysis and Mathematical Physics - OTAMP is a regular biennial event devoted to mathematical problems on the border between analysis and mathematical physics. The current volume presents articles written by participants, mostly invited speakers, and is devoted to problems at the forefront of modern mathematical physics such as spectral properties of CMV matrices and inverse problems for the non-classical Schroedinger equation. Other contributions deal with equations from mathematical physics and study their properties using methods of spectral analysis. The volume explores several new directions of research and may serve as a source of new ideas and problems for all scientists interested in modern mathematical physics.
The 1980s and 1990s have been a period of exciting new developments in the modelling of decision-making under risk and uncertainty. Extensions of the theory of expected utility and alternative theories of non-expected utility' have been devised to explain many puzzles and paradoxes of individual and collective choice behaviour. This volume presents some of the best recent work on the modelling of risk and uncertainty, with applications to problems in environmental policy, public health, economics and finance. Eighteen papers by distinguished economists, management scientists, and statisticians shed new light on phenomena such as the Allais and St. Petersburg paradoxes, the equity premium puzzle, the demand for insurance, the valuation of public health and safety, and environmental goods. Audience: This work will be of interest to economists, management scientists, risk and policy analysts, and others who study risky decision-making in economic and environmental contexts.
This book is the result of my doctoral dissertation research at the Department of Econometrics of the University of Geneva, Switzerland. This research was also partially financed by the Swiss National Science Foundation (grants 12- 31072.91 and 12-40300.94). First and foremost, I wish to express my deepest gratitude to Professor Manfred Gilli, my thesis supervisor, for his constant support and help. I would also like to thank the president of my jury, Professor Fabrizio Carlevaro, as well as the other members of the jury, Professor Andrew Hughes Hallett, Professor Jean-Philippe Vial and Professor Gerhard Wanner. I am grateful to my colleagues and friends of the Departement of Econometrics, especially David Miceli who provided constant help and kind understanding during all the stages of my research. I would also like to thank Pascale Mignon for proofreading my text and im proving my English. Finally, I am greatly indebted to my parents for their kindness and encourage ments without which I could never have achieved my goals. Giorgio Pauletto Department of Econometrics, University of Geneva, Geneva, Switzerland Chapter 1 Introduction The purpose of this book is to present the available methodologies for the solution of large-scale macroeconometric models. This work reviews classical solution methods and introduces more recent techniques, such as parallel com puting and nonstationary iterative algorithms."
This is a thorough and comprehensive treatment of the theory of NP-completeness in the framework of algebraic complexity theory. Coverage includes Valiant's algebraic theory of NP-completeness; interrelations with the classical theory as well as the Blum-Shub-Smale model of computation, questions of structural complexity; fast evaluation of representations of general linear groups; and complexity of immanants.
This book presents contributions and review articles on the theory of copulas and their applications. The authoritative and refereed contributions review the latest findings in the area with emphasis on "classical" topics like distributions with fixed marginals, measures of association, construction of copulas with given additional information, etc. The book celebrates the 75th birthday of Professor Roger B. Nelsen and his outstanding contribution to the development of copula theory. Most of the book's contributions were presented at the conference "Copulas and Their Applications" held in his honor in Almeria, Spain, July 3-5, 2017. The chapter 'When Gumbel met Galambos' is published open access under a CC BY 4.0 license.
VII Preface In many fields of mathematics, geometry has established itself as a fruitful method and common language for describing basic phenomena and problems as well as suggesting ways of solutions. Especially in pure mathematics this is ob vious and well-known (examples are the much discussed interplay between lin ear algebra and analytical geometry and several problems in multidimensional analysis). On the other hand, many specialists from applied mathematics seem to prefer more formal analytical and numerical methods and representations. Nevertheless, very often the internal development of disciplines from applied mathematics led to geometric models, and occasionally breakthroughs were b ed on geometric insights. An excellent example is the Klee-Minty cube, solving a problem of linear programming by transforming it into a geomet ric problem. Also the development of convex programming in recent decades demonstrated the power of methods that evolved within the field of convex geometry. The present book focuses on three applied disciplines: control theory, location science and computational geometry. It is our aim to demonstrate how methods and topics from convex geometry in a wider sense (separation theory of convex cones, Minkowski geometry, convex partitionings, etc.) can help to solve various problems from these disciplines." |
You may like...
|