Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics > General
Das Buch behandelt Matrizengleichungen und -funktionen sowie die computergerechte Darstellung und Losung der Bewegungsgleichungen von Schwingungssystemen mit endlich vielen Freiheitsgraden und fuhrt in die Grundlagen der Naherungsmethoden von Rayleigh und Ritz ein. Das Eigenwertproblem wird, anders als sonst ublich, von einem allgemeinen Standpunkt aus betrachtet. Dadurch gewinnt die Darstellung an Verstandlichkeit und an Anwendungsbreite. Das Buch ist sowohl fur Studierende als auch fur Physiker und Ingenieure in der Praxis geschrieben.
This book collects peer-reviewed contributions on modern statistical methods and topics, stemming from the third workshop on Analytical Methods in Statistics, AMISTAT 2019, held in Liberec, Czech Republic, on September 16-19, 2019. Real-life problems demand statistical solutions, which in turn require new and profound mathematical methods. As such, the book is not only a collection of solved problems but also a source of new methods and their practical extensions. The authoritative contributions focus on analytical methods in statistics, asymptotics, estimation and Fisher information, robustness, stochastic models and inequalities, and other related fields; further, they address e.g. average autoregression quantiles, neural networks, weighted empirical minimum distance estimators, implied volatility surface estimation, the Grenander estimator, non-Gaussian component analysis, meta learning, and high-dimensional errors-in-variables models.
In the present edition I have included "Supplements and Problems" located at the end of each chapter. This was done with the aim of illustrating the possibilities of the methods contained in the book, as well as with the desire to make good on what I have attempted to do over the course of many years for my students-to awaken their creativity, providing topics for independent work. The source of my own initial research was the famous two-volume book Methods of Mathematical Physics by D. Hilbert and R. Courant, and a series of original articles and surveys on partial differential equations and their applications to problems in theoretical mechanics and physics. The works of K. o. Friedrichs, which were in keeping with my own perception of the subject, had an especially strong influence on me. I was guided by the desire to prove, as simply as possible, that, like systems of n linear algebraic equations in n unknowns, the solvability of basic boundary value (and initial-boundary value) problems for partial differential equations is a consequence of the uniqueness theorems in a "sufficiently large" function space. This desire was successfully realized thanks to the introduction of various classes of general solutions and to an elaboration of the methods of proof for the corresponding uniqueness theorems. This was accomplished on the basis of comparatively simple integral inequalities for arbitrary functions and of a priori estimates of the solutions of the problems without enlisting any special representations of those solutions.
The International Symposia on Distributed Autonomous Robotic Systems (DARS) started at Riken, Japan in 1992. Since then, the DARS symposia have been held every two years: in 1994 and 1996 in Japan (Riken, Wako), in 1998 in Germany (Karlsruhe), in 2000 in the USA (Knoxville, TN), in 2002 in Japan (Fukuoka), in 2004 in France (Toulouse), and in 2006 in the USA (Minneapolis, MN). The 9th DARS symposium, which was held during November 17-19 in T- kuba, Japan, hosted 84 participants from 13 countries. The 48 papers presented there were selected through rigorous peer review with a 50% acceptance ratio. Along with three invited talks, they addressed the spreading research fields of DARS, which are classifiable along two streams: theoretical and standard studies of DARS, and interdisciplinary studies using DARS concepts. The former stream includes multi-robot cooperation (task assignment methodology among multiple robots, multi-robot localization, etc.), swarm intelligence, and modular robots. The latter includes distributed sensing, mobiligence, ambient intelligence, and mul- agent systems interaction with human beings. This book not only offers readers the latest research results related to DARS from theoretical studies to application-oriented ones; it also describes the present trends of this field. With the diversity and depth revealed herein, we expect that DARS technologies will flourish soon.
This monograph develops a framework for modeling and solving utility maximization problems in nonconvex wireless systems. The first part develops a model for utility optimization in wireless systems. The model is general enough to encompass a wide array of system configurations and performance objectives. Based on the general model, a set of methods for solving utility maximization problems is developed in the second part of the book. The development is based on a careful examination of the properties that are required for the application of each method. This part focuses on problems whose initial formulation does not allow for a solution by standard methods and discusses alternative approaches. The last part presents two case studies to demonstrate the application of the proposed framework. In both cases, utility maximization in multi-antenna broadcast channels is investigated.
At the heart of the topology of global optimization lies Morse Theory: The study of the behaviour of lower level sets of functions as the level varies. Roughly speaking, the topology of lower level sets only may change when passing a level which corresponds to a stationary point (or Karush-Kuhn Tucker point). We study elements of Morse Theory, both in the unconstrained and constrained case. Special attention is paid to the degree of differentiabil ity of the functions under consideration. The reader will become motivated to discuss the possible shapes and forms of functions that may possibly arise within a given problem framework. In a separate chapter we show how certain ideas may be carried over to nonsmooth items, such as problems of Chebyshev approximation type. We made this choice in order to show that a good under standing of regular smooth problems may lead to a straightforward treatment of "just" continuous problems by means of suitable perturbation techniques, taking a priori nonsmoothness into account. Moreover, we make a focal point analysis in order to emphasize the difference between inner product norms and, for example, the maximum norm. Then, specific tools from algebraic topol ogy, in particular homology theory, are treated in some detail. However, this development is carried out only as far as it is needed to understand the relation between critical points of a function on a manifold with structured boundary. Then, we pay attention to three important subjects in nonlinear optimization."
The technique of randomization has been employed to solve numerous prob lems of computing both sequentially and in parallel. Examples of randomized algorithms that are asymptotically better than their deterministic counterparts in solving various fundamental problems abound. Randomized algorithms have the advantages of simplicity and better performance both in theory and often is a collection of articles written by renowned experts in practice. This book in the area of randomized parallel computing. A brief introduction to randomized algorithms In the analysis of algorithms, at least three different measures of performance can be used: the best case, the worst case, and the average case. Often, the average case run time of an algorithm is much smaller than the worst case. 2 For instance, the worst case run time of Hoare's quicksort is O(n ), whereas its average case run time is only O(nlogn). The average case analysis is conducted with an assumption on the input space. The assumption made to arrive at the O(n logn) average run time for quicksort is that each input permutation is equally likely. Clearly, any average case analysis is only as good as how valid the assumption made on the input space is. Randomized algorithms achieve superior performances without making any assumptions on the inputs by making coin flips within the algorithm. Any analysis done of randomized algorithms will be valid for all possible inputs.
In January 1992, the Sixth Workshop on Optimization and Numerical Analysis was held in the heart of the Mixteco-Zapoteca region, in the city of Oaxaca, Mexico, a beautiful and culturally rich site in ancient, colonial and modern Mexican civiliza tion. The Workshop was organized by the Numerical Analysis Department at the Institute of Research in Applied Mathematics of the National University of Mexico in collaboration with the Mathematical Sciences Department at Rice University, as were the previous ones in 1978, 1979, 1981, 1984 and 1989. As were the third, fourth, and fifth workshops, this one was supported by a grant from the Mexican National Council for Science and Technology, and the US National Science Foundation, as part of the joint Scientific and Technical Cooperation Program existing between these two countries. The participation of many of the leading figures in the field resulted in a good representation of the state of the art in Continuous Optimization, and in an over view of several topics including Numerical Methods for Diffusion-Advection PDE problems as well as some Numerical Linear Algebraic Methods to solve related pro blems. This book collects some of the papers given at this Workshop."
The use of the internet for commerce has spawned a variety of auctions, marketplaces, and exchanges for trading everything from bandwidth to books. Mechanisms for bidding agents, dynamic pricing, and combinatorial bids are being implemented in support of internet-based auctions, giving rise to new versions of optimization and resource allocation models. This volume, a collection of papers from an IMA "Hot Topics" workshop in internet auctions, includes descriptions of real and proposed auctions, complete with mathematical model formulations, theoretical results, solution approaches, and computational studies. This volume also provides a mathematical programming perspective on open questions in auction theory, and provides a glimpse of the growing area of dynamic pricing.
Decision makers in managerial and public organizations often encounter de cision problems under conflict or competition, because they select strategies independently or by mutual agreement and therefore their payoffs are then affected by the strategies of the other decision makers. Their interests do not always coincide and are at times even completely opposed. Competition or partial cooperation among decision makers should be considered as an essen tial part of the problem when we deal with the decision making problems in organizations which consist of decision makers with conflicting interests. Game theory has been dealing with such problems and its techniques have been used as powerful analytical tools in the resolution process of the decision problems. The publication of the great work by J. von Neumann and O. Morgen stern in 1944 attracted attention of many people and laid the foundation of game theory. We can see remarkable advances in the field of game theory for analysis of economic situations and a number of books in the field have been published in recent years. The aim of game theory is to specify the behavior of each player so as to optimize the interests of the player. It then recommends a set of solutions as strategies so that the actions chosen by each decision maker (player) lead to an outcome most profitable for himself or her self."
Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm-Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg--Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi--Hijmans--De Boer hierarchy of approximations. In Part III the use of algebraic, transformation and decoration methods to obtain exact system information is considered. This is followed by an account of the use of transfer matrices for the location of incipient phase transitions in one-dimensionally infinite models and for exact solutions for two-dimensionally infinite systems. The latter is applied to a general analysis of eight-vertex models yielding as special cases the two-dimensional Ising model and the six-vertex model. The treatment of exact results ends with a discussion of dimer models. In Part IV series methods and real-space renormalization group transformations are discussed. The use of the De Neef-Enting finite-lattice method is described in detail and applied to the derivation of series for a number of model systems, in particular for the Potts model. The use of Pad\'e, differential and algebraic approximants to locate and analyze second- and first-order transitions is described. The realization of the ideas of scaling theory by the renormalization group is presented together with treatments of various approximation schemes including phenomenological renormalization. Part V of the book contains a collection of mathematical appendices intended to minimise the need to refer to other mathematical sources.
This thesis presents two analyses of semileptonic b sl+l decays using Flavour Changing Neutral Currents (FCNCs) to test for the presence of new physics and lepton flavour universality, and the equality of couplings for different leptons, which on the basis of experimental evidence is assumed to hold in the Standard Model, free from uncertainties as a result of knowledge of the hadronic matrix elements. It also includes the angular analysis of Lambda_b->Lambda mumu decay and the RK* measurement, both of which are first measurements, not yet performed by any other experiment.
This book, part of the seriesContributions in Mathematical and Computational Sciences, reviews recent developments in the theory of vertex operator algebras (VOAs) and their applications to mathematics and physics. The mathematical theory of VOAs originated from the famous monstrous moonshine conjectures of J.H. Conway and S.P. Norton, which predicted a deep relationship between the characters of the largest simple finite sporadic group, the Monster and the theory of modular forms inspired by the observations of J. MacKay and J. Thompson. The contributions are based on lectures delivered at the 2011 conference on Conformal Field Theory, Automorphic Forms and Related Topics, organized by the editors as part of a special program offered at Heidelberg University that summer under the sponsorship of the Mathematics Center Heidelberg (MATCH)."
The statistical analysis of discrete multivariate data has received a great deal of attention in the statistics literature over the past two decades. The develop ment ofappropriate models is the common theme of books such as Cox (1970), Haberman (1974, 1978, 1979), Bishop et al. (1975), Gokhale and Kullback (1978), Upton (1978), Fienberg (1980), Plackett (1981), Agresti (1984), Goodman (1984), and Freeman (1987). The objective of our book differs from those listed above. Rather than concentrating on model building, our intention is to describe and assess the goodness-of-fit statistics used in the model verification part of the inference process. Those books that emphasize model development tend to assume that the model can be tested with one of the traditional goodness-of-fit tests 2 2 (e.g., Pearson's X or the loglikelihood ratio G ) using a chi-squared critical value. However, it is well known that this can give a poor approximation in many circumstances. This book provides the reader with a unified analysis of the traditional goodness-of-fit tests, describing their behavior and relative merits as well as introducing some new test statistics. The power-divergence family of statistics (Cressie and Read, 1984) is used to link the traditional test statistics through a single real-valued parameter, and provides a way to consolidate and extend the current fragmented literature. As a by-product of our analysis, a new 2 2 statistic emerges "between" Pearson's X and the loglikelihood ratio G that has some valuable properties."
This book offers a presentation of the special theory of relativity that is mathematically rigorous and yet spells out in considerable detail the physical significance of the mathematics. It treats, in addition to the usual menu of topics one is accustomed to finding in introductions to special relativity, a wide variety of results of more contemporary origin. These include Zeeman's characterization of the causal automorphisms of Minkowski spacetime, the Penrose theorem on the apparent shape of a relativistically moving sphere, a detailed introduction to the theory of spinors, a Petrov-type classification of electromagnetic fields in both tensor and spinor form, a topology for Minkowski spacetime whose homeomorphism group is essentially the Lorentz group, and a careful discussion of Dirac's famous Scissors Problem and its relation to the notion of a two-valued representation of the Lorentz group. This second edition includes a new chapter on the de Sitter universe which is intended to serve two purposes. The first is to provide a gentle prologue to the steps one must take to move beyond special relativity and adapt to the presence of gravitational fields that cannot be considered negligible. The second is to understand some of the basic features of a model of the empty universe that differs markedly from Minkowski spacetime, but may be recommended by recent astronomical observations suggesting that the expansion of our own universe is accelerating rather than slowing down. The treatment presumes only a knowledge of linear algebra in the first three chapters, a bit of real analysis in the fourth and, in two appendices, some elementary point-set topology. The first edition of the book received the 1993 CHOICE award for Outstanding Academic Title. Reviews of first edition: ..". a valuable contribution to the pedagogical literature which will be enjoyed by all who delight in precise mathematics and physics." (American Mathematical Society, 1993) "Where many physics texts explain physical phenomena by means of mathematical models, here a rigorous and detailed mathematical development is accompanied by precise physical interpretations." (CHOICE, 1993) ..". his talent in choosing the most significant results and ordering them within the book can't be denied. The reading of the book is, really, a pleasure." (Dutch Mathematical Society, 1993) "
This volume constitutes a comprehensive self-contained course on source encoding. This is a rapidly developing field and the purpose of this book is to present the theory from its beginnings to the latest developments, some of which appear in book form for the first time. The major differences between this volume and previously published works is that here information retrieval is incorporated into source coding instead of discussing it separately. Second, this volume places an emphasis on the trade-off between complexity and the quality of coding; i.e. what is the price of achieving a maximum degree of data compression? Third, special attention is paid to universal families which contain a good compressing map for every source in a set. The volume presents a new algorithm for retrieval, which is optimal with respect to both program length and running time, and algorithms for hashing and adaptive on-line compressing. All the main tools of source coding and data compression such as Shannon, Ziv--Lempel, Gilbert--Moore codes, Kolmogorov complexity epsilon-entropy, lexicographic and digital search, are discussed. Moreover, data compression methods are described for developing short programs for partially specified Boolean functions, short formulas for threshold functions, identification keys, stochastic algorithms for finding the occurrence of a word in a text, and T-independent sets. For researchers and graduate students of information theory and theoretical computer science. The book will also serve as a useful reference for communication engineers and database designers.
This superb explication of a complex subject presents the current state of the art of the mathematical theory of symmetric functionals on random matrices. It emphasizes its connection with the statistical non-parametric estimation theory. The book provides a detailed description of the approach of symmetric function decompositions to the asymptotic theory of symmetric functionals, including the classical theory of U-statistics. It also presents applications of the theory.
Explores the link between universe, space exploration, and rocketry Discusses protection of Earth from asteroids, debris, and global warming Includes basic methodology to be adopted to design rockets for various specific applications Covers use of multi-objective optimization to realize a system and differences in design philosophies for satellite launch Examines material on environment protection of Earth
Density functional theory (DFT) has become the standard
workhorse for quantum mechanical simulations as it offers a good
compromise between accuracy and computational cost.
V-INVEX FUNCTIONS AND VECTOR OPTIMIZATION summarizes and synthesizes an aspect of research work that has been done in the area of Generalized Convexity over the past several decades. Specifically, the book focuses on V-invex functions in vector optimization that have grown out of the work of Jeyakumar and Mond in the 1990?s. V-invex functions are areas in which there has been much interest because it allows researchers and practitioners to address and provide better solutions to problems that are nonlinear, multi-objective, fractional, and continuous in nature. Hence, V-invex functions have permitted work on a whole new class of vector optimization applications. There has been considerable work on vector optimization by some highly distinguished researchers including Kuhn, Tucker, Geoffrion, Mangasarian, Von Neuman, Schaiible, Ziemba, etc. The authors have integrated this related research into their book and demonstrate the wide context from which the area has grown and continues to grow. The result is a well-synthesized, accessible, and usable treatment for students, researchers, and practitioners in the areas of OR, optimization, applied mathematics, engineering, and their work relating to a wide range of problems which include financial institutions, logistics, transportation, traffic management, etc.
In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.
Vladimir Igorevich Arnold is one of the most influential mathematicians of our time. V. I. Arnold launched several mathematical domains (such as modern geometric mechanics, symplectic topology, and topological fluid dynamics) and contributed, in a fundamental way, to the foundations and methods in many subjects, from ordinary differential equations and celestial mechanics to singularity theory and real algebraic geometry. Even a quick look at a partial list of notions named after Arnold already gives an overview of the variety of such theories and domains: KAM (Kolmogorov-Arnold-Moser) theory, The Arnold conjectures in symplectic topology, The Hilbert-Arnold problem for the number of zeros of abelian integrals, Arnold's inequality, comparison, and complexification method in real algebraic geometry, Arnold-Kolmogorov solution of Hilbert's 13th problem, Arnold's spectral sequence in singularity theory, Arnold diffusion, The Euler-Poincare-Arnold equations for geodesics on Lie groups, Arnold's stability criterion in hydrodynamics, ABC (Arnold-Beltrami-Childress) ?ows in ?uid dynamics, The Arnold-Korkina dynamo, Arnold's cat map, The Arnold-Liouville theorem in integrable systems, Arnold's continued fractions, Arnold's interpretation of the Maslov index, Arnold's relation in cohomology of braid groups, Arnold tongues in bifurcation theory, The Jordan-Arnold normal forms for families of matrices, The Arnold invariants of plane curves. Arnold wrote some 700 papers, and many books, including 10 university textbooks. He is known for his lucid writing style, which combines mathematical rigour with physical and geometric intuition. Arnold's books on Ordinarydifferentialequations and Mathematical methodsofclassicalmechanics became mathematical bestsellers and integral parts of the mathematical education of students throughout the world.
The Dynamics program and handbook allows the reader to explore nonlinear dynamics and chaos by the use of illustrated graphics. It is suitable for research and educational needs. This new edition allows the program = to run 3 times faster on the processes that are time consuming. Other major changes include: 1. There will be an add-your-own equation facility. This means it = will be unnecessary to have a compiler. PD and Lyanpunov exponents and Newton method for finding periodic orbits can all be carried out numerically without adding specific code for partial derivatives. 2. The program will support color postscript. 3. New menu system in which the user is prompted by options when a command is chosen. This means that the program is much easier to learn and to remember in comparison to current version. 4. Mouse support is added. 5. The program will be able to use the expanded memory available on modern PC's. This means pictures will be higher resolution. There are also many minor chan ce much of the source code will be available on the web, although some of ges such as zoom facility and help facility.=20 6. Due to limited spa it willr emain on the disk so that the unix users still have to purchase the book. This will allow minor upgrades for Unix users.
The second book in a set of ten on quantitative finance for practitioners Presents the theory needed to better understand applications Supplements previous training in mathematics Built from the author's four decades of experience in industry, research, and teaching
In 2008, November 23-28, the workshop of "Classical Problems on Planar Polynomial Vector Fields " was held in the Banff International Research Station, Canada. Called "classical problems", it was concerned with the following: (1) Problems on integrability of planar polynomial vector fields. (2) The problem of the center stated by Poincare for real polynomial differential systems, which asks us to recognize when a planar vector field defined by polynomials of degree at most n possesses a singularity which is a center. (3) Global geometry of specific classes of planar polynomial vector fields. (4) Hilbert's 16th problem. These problems had been posed more than 110 years ago. Therefore, they are called "classical problems" in the studies of the theory of dynamical systems. The qualitative theory and stability theory of differential equations, created by Poincare and Lyapunov at the end of the 19th century, had major developments as two branches of the theory of dynamical systems during the 20th century. As a part of the basic theory of nonlinear science, it is one of the very active areas in the new millennium. This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. The book is intended for graduate students, post-doctors and researchers in dynamical systems. For all engineers who are interested in the theory of dynamical systems, it is also a reasonable reference. It requires a minimum background of a one-year course on nonlinear differential equations. |
You may like...
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
A Commentary On Newton's Principia…
John Martin Frederick Wright
Hardcover
R1,025
Discovery Miles 10 250
View of Sir Isaac Newton's Philosophy
Henry 1694-1771 Pemberton
Hardcover
R994
Discovery Miles 9 940
|