![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > General
In these volumes, the most significant of the collected papers of the Chinese-American theoretical physicist Tsung-Dao Lee are printed. A complete list of his published papers, in order of publication, appears in the Bibliography of T.D. Lee. The papers have been arranged into ten categories, in most cases according to the subject matter. At the beginning of each of the first eight categories of papers, there is a commentary on the content and significance of all of the papers in the category. The two short final categories do not have any commentaries. The editor would like to thank Dr. Richard Friedberg for his assistance in the early stages of the editorial work on this project, as well as for writing commentaries on the papers of Categories III and IV. I would also like to thank Dr. Norman Christ for writing the commentary on the papers of Category VII. The assistance of Irene Tramm was in valuable in many aspects of preparing this collection, including locating copies of Lee's p pers. GERALD FEINBERG List of Categories of T.D. Lee's Papers Volume 1 I. Weak Interactions II. Early Papers on Astrophysics and Hydrodynamics III. Statistical Mechanics IV. Polarons and Solitons Volume 2 V. Quantum Field Theory VI. Symmetry Principles Volume 3 VII. Discrete Physics VIII. Strong Interaction Models IX. Historical Papers X. Gravity (Continuum Theory) Contents (Volume 3)* Introduction (by G. Feinberg) ............................................................ ix Bibliography of T.D. Lee ................................................................. xiii VII. Discrete Physics Commentary ................................................................ ."
* Recommended by T.Basar, SC series ed. * This text addresses a new, active area of research and fills a gap in the literature. * Bridges mathematics, engineering, and computer science; considers stochastic and optimization aspects of congestion control in Internet data transfers. * Useful as a supplementary text & reference for grad students with some background in control theory; also suitable for researchers.
Every thought is a throw of dice. Stephane Mallarme This book is the last one of a trilogy which reports a part of our research work over nearly thirty years (we discard our non-conventional results in automatic control theory and applications on the one hand, and fuzzy sets on the other), and its main key words are Information Theory, Entropy, Maximum Entropy Principle, Linguistics, Thermodynamics, Quantum Mechanics, Fractals, Fractional Brownian Motion, Stochastic Differential Equations of Order n, Stochastic Optimal Control, Computer Vision. Our obsession has been always the same: Shannon's information theory should play a basic role in the foundations of sciences, but subject to the condition that it be suitably generalized to allow us to deal with problems which are not necessarily related to communication engineering. With this objective in mind, two questions are of utmost importance: (i) How can we introduce meaning or significance of information in Shannon's information theory? (ii) How can we define and/or measure the amount of information involved in a form or a pattern without using a probabilistic scheme? It is obligatory to find suitable answers to these problems if we want to apply Shannon's theory to science with some chance of success. For instance, its use in biology has been very disappointing, for the very reason that the meaning of information is there of basic importance, and is not involved in this approach.
This is a book on Linear-Fractional Programming (here and in what follows we will refer to it as "LFP"). The field of LFP, largely developed by Hungarian mathematician B. Martos and his associates in the 1960's, is concerned with problems of op timization. LFP problems deal with determining the best possible allo cation of available resources to meet certain specifications. In particular, they may deal with situations where a number of resources, such as people, materials, machines, and land, are available and are to be combined to yield several products. In linear-fractional programming, the goal is to determine a per missible allocation of resources that will maximize or minimize some specific showing, such as profit gained per unit of cost, or cost of unit of product produced, etc. Strictly speaking, linear-fractional programming is a special case of the broader field of Mathematical Programming. LFP deals with that class of mathematical programming problems in which the relations among the variables are linear: the con straint relations (i.e. the restrictions) must be in linear form and the function to be optimized (i.e. the objective function) must be a ratio of two linear functions."
A PRACTICAL GUIDE TO OPTIMIZATION PROBLEMS WITH DISCRETE OR INTEGER VARIABLES, REVISED AND UPDATED The revised second edition of Integer Programming explains in clear and simple terms how to construct custom-made algorithms or use existing commercial software to obtain optimal or near-optimal solutions for a variety of real-world problems. The second edition also includes information on the remarkable progress in the development of mixed integer programming solvers in the 22 years since the first edition of the book appeared. The updated text includes information on the most recent developments in the field such as the much improved preprocessing/presolving and the many new ideas for primal heuristics included in the solvers. The result has been a speed-up of several orders of magnitude. The other major change reflected in the text is the widespread use of decomposition algorithms, in particular column generation (branch-(cut)-and-price) and Benders' decomposition. The revised second edition: Contains new developments on column generation Offers a new chapter on Benders' algorithm Includes expanded information on preprocessing, heuristics, and branch-and-cut Presents several basic and extended formulations, for example for fixed cost network flows Also touches on and briefly introduces topics such as non-bipartite matching, the complexity of extended formulations or a good linear program for the implementation of lift-and-project Written for students of integer/mathematical programming in operations research, mathematics, engineering, or computer science, Integer Programming offers an updated edition of the basic text that reflects the most recent developments in the field.
From the reviews "A good introduction to a subject important for its capacity to circumvent theoretical and practical obstacles, and therefore particularly prized in the applications of mathematics. The book presents a balanced view of the methods and their usefulness: integrals on the real line and in the complex plane which arise in different contexts, and solutions of differential equations not expressible as integrals. Murray includes both historical remarks and references to sources or other more complete treatments. More useful as a guide for self-study than as a reference work, it is accessible to any upperclass mathematics undergraduate. Some exercises and a short bibliography included. Even with E.T. Copson's "Asymptotic " "Expansions" or N.G. de Bruijn's "Asymptotic Methods in " "Analysis" (1958), any academic library would do well to have this excellent introduction." ("S. Puckette, University of " "the South") #"Choice Sept. 1984"#1
Variational principles have proven to be surprisingly fertile. For example, Fermat used variational methods to demonstrate that light follows the fastest route from one point to another, an idea which came to be a cornerstone of geometrical optics. This book explains variational principles and charts their use throughout modern physics. It examines the analytical mechanics of Lagrange and Hamilton, the basic tools of any physicist. The book also offers simple but rich first impressions of Einstein’s General Relativity, Feynman’s Quantum Mechanics, and more that reveal amazing interconnections between various fields of physics.
The present book carefully studies the blow-up phenomenon of solutions to partial differential equations, including many equations of mathematical physics. The included material is based on lectures read by the authors at the Lomonosov Moscow State University, and the book is addressed to a wide range of researchers and graduate students working in nonlinear partial differential equations, nonlinear functional analysis, and mathematical physics. Contents Nonlinear capacity method of S. I. Pokhozhaev Method of self-similar solutions of V. A. Galaktionov Method of test functions in combination with method of nonlinear capacity Energy method of H. A. Levine Energy method of G. Todorova Energy method of S. I. Pokhozhaev Energy method of V. K. Kalantarov and O. A. Ladyzhenskaya Energy method of M. O. Korpusov and A. G. Sveshnikov Nonlinear Schroedinger equation Variational method of L. E. Payne and D. H. Sattinger Breaking of solutions of wave equations Auxiliary and additional results
The field of global optimization has been developing at a rapid pace. There is a journal devoted to the topic, as well as many publications and notable books discussing various aspects of global optimization. This book is intended to complement these other publications with a focus on stochastic methods for global optimization. Stochastic methods, such as simulated annealing and genetic algo rithms, are gaining in popularity among practitioners and engineers be they are relatively easy to program on a computer and may be cause applied to a broad class of global optimization problems. However, the theoretical performance of these stochastic methods is not well under stood. In this book, an attempt is made to describe the theoretical prop erties of several stochastic adaptive search methods. Such a theoretical understanding may allow us to better predict algorithm performance and ultimately design new and improved algorithms. This book consolidates a collection of papers on the analysis and de velopment of stochastic adaptive search. The first chapter introduces random search algorithms. Chapters 2-5 describe the theoretical anal ysis of a progression of algorithms. A main result is that the expected number of iterations for pure adaptive search is linear in dimension for a class of Lipschitz global optimization problems. Chapter 6 discusses algorithms, based on the Hit-and-Run sampling method, that have been developed to approximate the ideal performance of pure random search. The final chapter discusses several applications in engineering that use stochastic adaptive search methods."
This Festschrift is dedicated to Goetz Trenkler on the occasion of his 65th birthday. As can be seen from the long list of contributions, Goetz has had and still has an enormous range of interests, and colleagues to share these interests with. He is a leading expert in linear models with a particular focus on matrix algebra in its relation to statistics. He has published in almost all major statistics and matrix theory journals. His research activities also include other areas (like nonparametrics, statistics and sports, combination of forecasts and magic squares, just to mention afew). Goetz Trenkler was born in Dresden in 1943. After his school years in East G- many and West-Berlin, he obtained a Diploma in Mathematics from Free University of Berlin (1970), where he also discovered his interest in Mathematical Statistics. In 1973, he completed his Ph.D. with a thesis titled: On a distance-generating fu- tion of probability measures. He then moved on to the University of Hannover to become Lecturer and to write a habilitation-thesis (submitted 1979) on alternatives to the Ordinary Least Squares estimator in the Linear Regression Model, a topic that would become his predominant ?eld of research in the years to come.
'Stats to Go' is a user-friendly guide for hospitality, leisure and tourism students who need to learn statistics and statistical techniques. 'Stats to go' is an ideal companion to hospitality, leisure and tourism studies as the breadth of coverage supports all taught numerical aspects of these types of course. Examples from hospitality, leisure and tourism organizations: * licensed premises* fast food outlets* hotels * theme parksand their environments are used to illustrate key issues of the text.The area of quantitative methods is one which many students find unapproachable or daunting. With the use of a clear learning structure, and a user friendly, non-theoretical approach, Buglear has created a text which students and lecturers alike will find indispensable.
In delivering lectures and writing books, we were most often forced to pay absolutely no attention to a great body of interesting results and useful algorithms appearing in numerous sources and occasionally encountered. It was absolutely that most of these re sults would finally be forgotten because it is impossible to run through the entire variety of sources where these materials could be published. Therefore, we decided to do what we can to correct this situation. We discussed this problem with Ershov and came to an idea to write an encyclopedia of algorithms on graphs focusing our main attention on the algorithms already used in programming and their generalizations or modifications. We thought that it is reasonable to group all graphs into certain classes and place the algo rithms developed for each class into a separate book. The existence of trees, i. e., a class of graphs especially important for programming, also supported this decision. This monograph is the first but, as we hope, not the last book written as part of our project. It was preceded by two books "Algorithms on Trees" (1984) and "Algorithms of Processing of Trees" (1990) small editions of which were published at the Computer Center of the Siberian Division of the Russian Academy of Sciences. The books were distributed immediately and this made out our decision to prepare a combined mono graph on the basis of these books even stronger."
Useful in physics, economics, psychology, and other fields, random matrices play an important role in the study of multivariate statistical methods. Until now, however, most of the material on random matrices could only be found scattered in various statistical journals. Matrix Variate Distributions gathers and systematically presents most of the recent developments in continuous matrix variate distribution theory and includes new results.
Owing to its simple formulation and intractable nature, along with its application to the lunar theory, the three-body problem has since it was first studied by Newton in the Principia attracted the attention of many of the world's most gifted mathematicians and astronomers. Two of these, Euler and Lagrange, discovered the problem's first periodic solutions. However, it was not until Hill's discovery in the late 1870s of the variational orbit that the importance of the periodic solutions was fully recognized, most notably by Poincare, but also by others such as Sir George Darwin. The book begins with a detailed description of the early history of the three-body problem and its periodic solutions, with chapters dedicated to the pioneering work of Hill, Poincare, and Darwin. This is followed by the first in-depth account of the contribution to the subject by the mathematical astronomer Forest Ray Moulton and his research students at the University of Chicago. The author reveals how Moulton's Periodic Orbits, published in 1920 and running to some 500 pages, arose from Moulton's ambitious goal of creating an entirely new lunar theory. The methods Moulton developed in the pursuit of this goal are described and an examination is made of both the reception of his work and his legacy for future generations of researchers.
Convective flow in the liquid phase is always present in a realistic process of freezing and melting and may significantly affect the dynamics and results of the process. The study of the interplay of growth and convection flow during the solidification has been an important subject in the broad fields of materials science, condensed matter physics, fluid physics, micro-gravity science, etc. The present book is concerned with the dynamics of free dendritic growth with convective flow in the melt. It systematically presents the results obtained in terms of a unified asymptotic approach in the framework of the interfacial wave (IFW) theory. In particular, the book explores the effect of the various types of convection flow on the selection and pattern formation of dendritic growth based on the global stability analysis.
The book is composed of two main parts: mathematical background and queueing systems with applications. The mathematical background is a self containing introduction to the stochastic processes of the later studies queueing systems. It starts with a quick introduction to probability theory and stochastic processes and continues with chapters on Markov chains and regenerative processes. More recent advances of queueing systems are based on phase type distributions, Markov arrival processes and quasy birth death processes, which are introduced in the last chapter of the first part. The second part is devoted to queueing models and their applications. After the introduction of the basic Markovian (from M/M/1 to M/M/1//N) and non-Markovian (M/G/1, G/M/1) queueing systems, a chapter presents the analysis of queues with phase type distributions, Markov arrival processes (from PH/M/1 to MAP/PH/1/K). The next chapter presents the classical queueing network results and the rest of this part is devoted to the application examples. There are queueing models for bandwidth charing with different traffic classes, slotted multiplexers, ATM switches, media access protocols like Aloha and IEEE 802.11b, priority systems and retrial systems. An appendix supplements the technical content with Laplace and z transformation rules, Bessel functions and a list of notations. The book contains examples and exercises throughout and could be used for graduate students in engineering, mathematics and sciences.
Prediction of a random field based on observations of the random field at some set of locations arises in mining, hydrology, atmospheric sciences, and geography. Kriging, a prediction scheme defined as any prediction scheme that minimizes mean squared prediction error among some class of predictors under a particular model for the field, is commonly used in all these areas of prediction. This book summarizes past work and describes new approaches to thinking about kriging.
Hardbound. This research annual presents state-of-the-art studies in the integration of mathematical planning and management. As the literature and techniques in financial planning and management become increasingly complex, our monographs aid in the dissemination of research efforts in quantitative financial analysis. Topics include cash management, capital budgeting, financial decisions, portfolio management and performance analysis, and financial planning models.
Operations research and mathematical programming would not be as advanced today without the many advances in interior point methods during the last decade. These methods can now solve very efficiently and robustly large scale linear, nonlinear and combinatorial optimization problems that arise in various practical applications. The main ideas underlying interior point methods have influenced virtually all areas of mathematical programming including: analyzing and solving linear and nonlinear programming problems, sensitivity analysis, complexity analysis, the analysis of Newton's method, decomposition methods, polynomial approximation for combinatorial problems etc. This book covers the implications of interior techniques for the entire field of mathematical programming, bringing together many results in a uniform and coherent way. For the topics mentioned above the book provides theoretical as well as computational results, explains the intuition behind the main ideas, gives examples as well as proofs, and contains an extensive up-to-date bibliography. Audience: The book is intended for students, researchers and practitioners with a background in operations research, mathematics, mathematical programming, or statistics.
This book is written for quantitative finance professionals, students, educators, and mathematically inclined individual investors. It is about some of the latest developments in pricing, hedging, and investing in incomplete markets. With regard to pricing, two frameworks are fully elaborated: neutral and indifference pricing. With regard to hedging, the most conservative and relaxed hedging formulas are derived. With regard to investing, the neutral pricing methodology is also considered as a tool for connecting market asset prices with optimal positions in such assets. SrdjanD.Stojanovic isProfessor in the Department of Mathematical Sciences at University of Cincinnati (USA) and Professor in the Center for Financial Engineering at Suzhou University (China)."
Handbook of Grid Generation addresses the use of grids (meshes) in the numerical solutions of partial differential equations by finite elements, finite volume, finite differences, and boundary elements. Four parts divide the chapters: structured grids, unstructured girds, surface definition, and adaption/quality. An introduction to each section provides a roadmap through the material. This handbook covers: -Fundamental concepts and approaches -Grid generation process -Essential mathematical elements from tensor analysis and differential geometry, particularly relevant to curves and surfaces -Cells of any shape - Cartesian, structured curvilinear coordinates, unstructured tetrahedra, unstructured hexahedra, or various combinations -Separate grids overlaid on one another, communicating data through interpolation -Moving boundaries and internal interfaces in the field -Resolving gradients and controlling solution error -Grid generation codes, both commercial and freeware, as well as representative and illustrative grid configurations Handbook of Grid Generation contains 37 chapters as well as contributions from more than 100 experts from around the world, comprehensively evaluating this expanding field and providing a fundamental orientation for practitioners.
As occupational health and safety professionals require increased awareness of the whole field-and not just its specialized areas-they've started to need an all-encompassing reference work of necessary mathematical relationships.
This monograph offers a concise overview of the theoretical description of various collective phenomena in condensed matter physics. These effects include the basic electronic structure in solid state physics, lattice vibrations, superconductivity, light-matter interaction and more advanced topics such as martensitic transistions.
This is the sixth volume in a series of books on the general topics of supersymmetry, supergravity, black holes and the attractor mechanism. The present volume is based upon lectures held in May 2011 at the INFN-Laboratori Nazionali di Frascati School on Black Objects in Supergravity (BOSS2011), directed by Stefano Bellucci, with the participation of prestigious lecturers, including G. Lopes Cardoso, W. Chemissany, T. Ortin, J. Perz, O. Vaughan, D. Turton, L. Lusanna and S. Ferrara. All lectures were at a pedagogical, introductory level, a feature which is reflected in the specific "flavor" of this volume, which also benefited greatly from extensive discussions and related reworking of the various contributions. |
You may like...
The Nonlinear Schroedinger Equation
Nalan Antar, Ilkay Bakirtas
Hardcover
R3,089
Discovery Miles 30 890
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
Multiscale Modeling of Vascular Dynamics…
Huilin Ye, Zhiqiang Shen, …
Paperback
R750
Discovery Miles 7 500
Infinite Words, Volume 141 - Automata…
Dominique Perrin, Jean-Eric Pin
Hardcover
R4,065
Discovery Miles 40 650
|