![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > General
This book proposes a new approach to handle the problem of limited training data. Common approaches to cope with this problem are to model the shape variability independently across predefined segments or to allow artificial shape variations that cannot be explained through the training data, both of which have their drawbacks. The approach presented uses a local shape prior in each element of the underlying data domain and couples all local shape priors via smoothness constraints. The book provides a sound mathematical foundation in order to embed this new shape prior formulation into the well-known variational image segmentation framework. The new segmentation approach so obtained allows accurate reconstruction of even complex object classes with only a few training shapes at hand.
Although there has been a surge of interest in density estimation in recent years, much of the published research has been concerned with purely technical matters with insufficient emphasis given to the technique's practical value. Furthermore, the subject has been rather inaccessible to the general statistician.
This book presents problems and solutions of the mathematical theories of thermoelasticity and magnetothermoelasticity. The classical, coupled and generalized theories are solved using the eigenvalue methodology. Different methods of numerical inversion of the Laplace transform are presented and their direct applications are illustrated. The book is very useful to those interested in continuum mechanics.
The book is devoted to mathematical foundations providing synthesis and analysis of control and adaptation algorithms targeting modern telecommunication systems (TCS). These algorithms are finding more and more applications in modern telecommunication technologies and they determine the efficiency of TCS. The concept of telecommunication management network is used as a base methodology. The most popular technologies and network management methods are discussed. They include such issues as Common Management Information Protocol, Remote Network Management Protocol Information Base, Simple Network Management Protocol, and Net Flow. The methods of state variables are used as the main mathematic approaches for simulating control tasks. It allows solving the dynamic problems in the recursive style. The decomposition theorem is used for synthesis of control algorithms. Such issues as control algorithms for system observation and system state are discussed in details. The interpretation of applicability for discussed algorithms is given. Some part of the book is devoted to methods of statistic gathering and suppressing of a priori uncertainty. They are reduced to constructing adaptive procedures and algorithms of self-organization and self-repairing for intellectual taught systems. The neural networks, multifunctional automata and Petri nets are discussed as examples. Also, tasks and problems of business processes management are shown in their connection with TCS. Our book targets on students, PhD students and professionals in the area of telecommunications. We hope it will be useful for everybody connected with the new information technologies.
Operations Research in Space and Air is a selection of papers reflecting the experience and expertise of international OR consulting companies and academic groups. The global market and competition play a crucial part in the decision making processes within the Space and Air industries and this book gives practical examples of how advanced applications can be used by Space and Air industry management. The material within the book provides both the basic background for the novice modeler and a useful reference for experienced modelers. Students, researchers and OR practitioners will appreciate the details of the modeling techniques, the processes that have been implemented and the computational results that demonstrate the benefits in applying OR in the Space and Airline industries. Advances in PC and Workstations technology, in optimiza tion engines and in modeling techniques now enable solving problems, never before attained by Operations Research. In recent years the Ital ian OR Society (AfRO, www. airo. org) has organized annual forums for researchers and practitioners to meet together to present and dis cuss the various scientific and technical OR achievements. The OR in Space 8 Air session of AfR02001 and AfR02002 Conferences, together with optimization tools' applications, presented recent results achieved by Alenia Spazio S. p. A. (Turin), Alitalia, Milan Polytechnic and Turin Polytechinc. With additional contributions from academia and indus try they have enabled us to capture, in print, today's 'state-of-the-art' optimization and data mining solutions."
In the third and final book of his iconic piano etudes Gyoergy Ligeti charts a new path relative to the rest of his musical output, representing a significant arrival in a composer's oeuvre known for its stylistic transformations. This monograph is the first dedicated study of these capstone works, investigating them through a novel lens of statistical-graphical analysis that illuminates their compositional uniqueness as well as broader questions regarding the perception of stability in musical texture. With nearly 200 graphical illustrations and a detailed commentary, this examination reveals the unique manner in which Ligeti treads between tonality and atonality-a key idea in his late style-and the centrality of processes related to broader scale areas (or "macroharmony") in articulating structures and narratives. The analytical techniques developed here are a powerful tool for investigating macroharmonic stability that can be applied to a wide range of repertoire beyond these works. This book is intended for graduate-level and professional music theorists, musicologists, performers and mathematicians.
Written as a textbook, A First Course in Functional Analysis is an introduction to basic functional analysis and operator theory, with an emphasis on Hilbert space methods. The aim of this book is to introduce the basic notions of functional analysis and operator theory without requiring the student to have taken a course in measure theory as a prerequisite. It is written and structured the way a course would be designed, with an emphasis on clarity and logical development alongside real applications in analysis. The background required for a student taking this course is minimal; basic linear algebra, calculus up to Riemann integration, and some acquaintance with topological and metric spaces.
This book delivers a comprehensive and up-to-date treatment of practical applications of metamaterials, structured media, and conventional porous materials. With increasing levels of urbanization, a growing demand for motorized transport, and inefficient urban planning, environmental noise exposure is rapidly becoming a pressing societal and health concern. Phononic and sonic crystals, acoustic metamaterials, and metasurfaces can revolutionize noise and vibration control and, in many cases, replace traditional porous materials for these applications. In this collection of contributed chapters, a group of international researchers reviews the essentials of acoustic wave propagation in metamaterials and porous absorbers with viscothermal losses, as well as the most recent advances in the design of acoustic metamaterial absorbers. The book features a detailed theoretical introduction describing commonly used modelling techniques such as plane wave expansion, multiple scattering theory, and the transfer matrix method. The following chapters give a detailed consideration of acoustic wave propagation in viscothermal fluids and porous media, and the extension of this theory to non-local models for fluid saturated metamaterials, along with a description of the relevant numerical methods. Finally, the book reviews a range of practical industrial applications, making it especially attractive as a white book targeted at the building, automotive, and aeronautic industries.
Parallel Algorithms for Linear Models provides a complete and detailed account of the design, analysis and implementation of parallel algorithms for solving large-scale linear models. It investigates and presents efficient, numerically stable algorithms for computing the least-squares estimators and other quantities of interest on massively parallel systems. The monograph is in two parts. The first part consists of four chapters and deals with the computational aspects for solving linear models that have applicability in diverse areas. The remaining two chapters form the second part, which concentrates on numerical and computational methods for solving various problems associated with seemingly unrelated regression equations (SURE) and simultaneous equations models. The practical issues of the parallel algorithms and the theoretical aspects of the numerical methods will be of interest to a broad range of researchers working in the areas of numerical and computational methods in statistics and econometrics, parallel numerical algorithms, parallel computing and numerical linear algebra. The aim of this monograph is to promote research in the interface of econometrics, computational statistics, numerical linear algebra and parallelism.
From the reviews: "The huge literature in risk theory has been
carefully selected and supplemented by personal contributions of
the author, many of which appear here for the first time. The
result is a systematic and very readable book, which takes into
account the most recent developments of the field. It will be of
great interest to the actuary as well as to the statistician who
wants to become familiar with the subject." "Math. Reviews Vol.
43"
Building on the success of the first edition, An Introduction to Number Theory with Cryptography, Second Edition, increases coverage of the popular and important topic of cryptography, integrating it with traditional topics in number theory. The authors have written the text in an engaging style to reflect number theory's increasing popularity. The book is designed to be used by sophomore, junior, and senior undergraduates, but it is also accessible to advanced high school students and is appropriate for independent study. It includes a few more advanced topics for students who wish to explore beyond the traditional curriculum. Features of the second edition include Over 800 exercises, projects, and computer explorations Increased coverage of cryptography, including Vigenere, Stream, Transposition,and Block ciphers, along with RSA and discrete log-based systems "Check Your Understanding" questions for instant feedback to students New Appendices on "What is a proof?" and on Matrices Select basic (pre-RSA) cryptography now placed in an earlier chapter so that the topic can be covered right after the basic material on congruences Answers and hints for odd-numbered problems About the Authors: Jim Kraft received his Ph.D. from the University of Maryland in 1987 and has published several research papers in algebraic number theory. His previous teaching positions include the University of Rochester, St. Mary's College of California, and Ithaca College, and he has also worked in communications security. Dr. Kraft currently teaches mathematics at the Gilman School. Larry Washington received his Ph.D. from Princeton University in 1974 and has published extensively in number theory, including books on cryptography (with Wade Trappe), cyclotomic fields, and elliptic curves. Dr. Washington is currently Professor of Mathematics and Distinguished Scholar-Teacher at the University of Maryland.
The idea of organising a colloquium on turbulence emerged during the sabbatical leave of Prof. Arkady Tsinober in Zurich. New experimental observations and the insight gained through direct numerical simulations have been stimulating research in turbulence and are leading to the developments of new concepts. The organisers felt the necessity to bring together researchers who have contributed significantly to the advances in this field in a colloquium in which the current achievements and the future development in the theoretical, numerical and experimental approaches would be discussed. The main emphasis of the colloquium was put on discussions. These discussions led to an interesting and exciting exchange of ideas, but also involved its very laborious transcription onto paper. It was due to the personal efforts of Mrs. A. Vyskocil, Dr. N. Malik and Dr. X. Studerus that this work could be completed. The colloquium was held in the relaxed atmosphere of the Centro Stefano Franscini in Monte Verita near Ascona, a locality of exceptional natural beauty, which was put at our disposal by the Swiss Federal Institute of Technology. We would like to express our gratitude for this generous financial and logistic support, which contributed considerably to the success of the colloquium. Zurich, April 1993 Th. Dracos, A. Tsinober Participants Adrian, R. J. Kambe, T. Antonia, R. A. Kit,E. Aref, H. Landahl, M. T. Betchov, R. Lesieur, M. Bewersdorff, H. -W. Malik, N. Castaing, B. Moffatt, H. K. Chen, J. Moin,P. Dracos, T. Mullin, T. Frisch, U. Novikov, E. A.
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.
This volume on financial and economic simulations in Swarm marks the continued progress by a group of researchers to incorporate agent-based computer models as an important tool within their discipline. Swarm promotes agent-based computer models as a tool for the study of complex systems. A common language is leading to the growth of user communities in specific areas of application. Furthermore, by providing an organizing framework to guide the development of more problem-specific structures, and by dealing with a whole range of issues that affect their fundamental correctness and their ability to be developed and reused, Swarm has sought to make the use of agent-based models a legitimate tool of scientific investigation that also meets the practical needs of investigators within a community. Swarm's principal foundation is an object-oriented representation of active agents interacting among themselves and with their environment. To this base layer it adds its own structures to drive, record and portrait the events that occur across this world. The specific contents of any world, however, are up to the experimenter to provide, either by building them from scratch or by tapping previous contributions. This book is notable in assembling a rich array of such contributions, which are significant in their own right, but which can also be mined to extract the reusable elements in their respective areas of finance and economics. It also presents three interesting software additions with tutorials in the form of simple financial and economic applications. A Swarm meta-language closer to a natural language', the use of internet-augmented Swarm for experimental economics, and a Swarm visualbuilder will meet the challenges launched by other agent-based modelling competitors. The Swarm community at large can benefit greatly from the lead that the growing field of computational economics is taking to address its own needs, as represented by this book.
These proceedings from the 2013 symposium on "Chaos, complexity and leadership" reflect current research results from all branches of Chaos, Complex Systems and their applications in Management. Included are the diverse results in the fields of applied nonlinear methods, modeling of data and simulations, as well as theoretical achievements of Chaos and Complex Systems. Also highlighted are Leadership and Management applications of Chaos and Complexity Theory.
Discontinuity in Nonlinear Physical Systems explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed.
The discovery of high temperature superconductors (HTS) in 1986 by two IBM scientists led to an unprecedented explosion of research and development efforts world-wide because of the significant potential for practical applications offered by these materials. However, the early euphoria created by the exciting prospects was dampened by the daunting task of fabricating these materials into useful forms with acceptable superconducting properties. Progress towards this goal has been hindered by many intrinsic materials problems, such as weak-links, flux-creep, and poor mechanical properties. The above problems led to the development of the Second-Generation of HTS wires. Three methods were invented to produce flexible metallic substrates, which were also crystallographically biaxially textured, and resembled a long, mosaic single crystal. The first method invented is the Ion-Beam-Assisted-Deposition (IBAD). The second method developed was the Inclined-Substrate-Deposition (ISD). The third method invented is called the Rolling-assisted-biaxially-textured-substrates (RABiTS). The book is divided into four sections. The first section discusses the three methods to fabricate biaxially textured substrates, upon which, epitaxial YBCO or other HTS materials can be deposited to realize a single-crystal-like HTS wire. The second section includes chapters on various methods of HTS deposition such as pulsed laser ablation (PLD), thermal co-evaporation, sputtering, pulsed electron beam deposition, ex-situ BaF2 by co-evaporation flowed by annealing, chemical solution based ex-situ processes, jet vapor deposition, metal organic chemical vapor deposition (MOCVD), and liquid phase epitaxy (LPE).The third section includes detailed chapters on other HTS materials such as the various Tl-based and Hg-based conductors. These Second-Generation HTS conductors, also referred to as "Coated conductors" represent one of the most exciting developments in HTS technology. HTS wires based on this technology have the potential to carry 100-1000 times the current without resistance losses of comparable copper wire. HTS power equipment based on these HTS conductors has a potential to be half the size of conventional alternatives with the same or higher power rating and less than one half the energy losses. Upgrading of the world-wide electric power transmission and distribution with HTS based devices can significantly help in meeting the growing demand for electricity world-wide. There is little question that superconducting technology based on the Next-Generation HTS Superconducting Wires will make a substantial impact on the way we generate, transmit, distribute and use electric power. Of course the question is - how soon?
This book provides an itinerary to quantum mechanics taking into account the basic mathematics to formulate it. Specifically, it features the main experiments and postulates of quantum mechanics pointing out their mathematical prominent aspects showing how physical concepts and mathematical tools are deeply intertwined. The material covers topics such as analytic mechanics in Newtonian, Lagrangian, and Hamiltonian formulations, theory of light as formulated in special relativity, and then why quantum mechanics is necessary to explain experiments like the double-split, atomic spectra, and photoelectric effect. The Schroedinger equation and its solutions are developed in detail. It is pointed out that, starting from the concept of the harmonic oscillator, it is possible to develop advanced quantum mechanics. Furthermore, the mathematics behind the Heisenberg uncertainty principle is constructed towards advanced quantum mechanical principles. Relativistic quantum mechanics is finally considered.The book is devoted to undergraduate students from University courses of Physics, Mathematics, Chemistry, and Engineering. It consists of 50 self-contained lectures, and any statement and theorem are demonstrated in detail. It is the companion book of "A Mathematical Journey to Relativity", by the same Authors, published by Springer in 2020.
This book presents the fundamental theory for non-standard diffusion problems in movement ecology. Levy processes and anomalous diffusion have shown to be both powerful and useful tools for qualitatively and quantitatively describing a wide variety of spatial population ecological phenomena and dynamics, such as invasion fronts and search strategies. Adopting a self-contained, textbook-style approach, the authors provide the elements of statistical physics and stochastic processes on which the modeling of movement ecology is based and systematically introduce the physical characterization of ecological processes at the microscopic, mesoscopic and macroscopic levels. The explicit definition of these levels and their interrelations is particularly suitable to coping with the broad spectrum of space and time scales involved in bio-ecological problems. Including numerous exercises (with solutions), this text is aimed at graduate students and newcomers in this field at the interface of theoretical ecology, mathematical biology and physics.
This book gathers outstanding papers on numerical modeling in Civil Engineering (Volume 1) as part of the 2-volume proceedings of the 4th International Conference on Numerical Modeling in Engineering (NME 2021), which was held in Ghent, Belgium, on 24-25 August 2021. The overall objective of the conference was to bring together international scientists and engineers in academia and industry from fields related to advanced numerical techniques, such as the finite element method (FEM), boundary element method (BEM), isogeometric analysis (IGA), etc., and their applications to a wide range of engineering disciplines. This volume covers numerical simulations with industrial civil engineering applications such as bridges and dams, cyclic loading, fluid dynamics, structural mechanics, geotechnical engineering, thermal analysis, reinforced concrete structures, steel structures, and composite structures.
Written by a well-known expert in the field, the focus of this book is on an innovative mathematical theory which applies to classical models of physics such as shock waves and balance laws. The text is based on early works in common with P.L. Lions (field medalist).
The second part of an elementary textbook which combines linear functional analysis, nonlinear functional analysis, and their substantial applications. The book addresses undergraduates and beginning graduates of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world and which play an important role in the history of mathematics. The books approach is to attempt to determine the most important applications. These concern integral equations, differential equations, bifurcation theory, the moment problem, Cebysev approximation, the optimal control of rockets, game theory, symmetries and conservation laws, the quark model, and gauge theory in elementary particle physics. The presentation is self-contained and requires only that readers be familiar with some basic facts of calculus.
This book highlights various evolutionary algorithm techniques for various medical conditions and introduces medical applications of evolutionary computation for real-time diagnosis. Evolutionary Intelligence for Healthcare Applications presents how evolutionary intelligence can be used in smart healthcare systems involving big data analytics, mobile health, personalized medicine, and clinical trial data management. It focuses on emerging concepts and approaches and highlights various evolutionary algorithm techniques used for early disease diagnosis, prediction, and prognosis for medical conditions. The book also presents ethical issues and challenges that can occur within the healthcare system. Researchers, healthcare professionals, data scientists, systems engineers, students, programmers, clinicians, and policymakers will find this book of interest.
The first derivative of a particle coordinate means its velocity, the second means its acceleration, but what does a fractional order derivative mean? Where does it come from, how does it work, where does it lead to? The two-volume book written on high didactic level answers these questions. Fractional Derivatives for Physicists and Engineers- The first volume contains a clear introduction into such a modern branch of analysis as the fractional calculus. The second develops a wide panorama of applications of the fractional calculus to various physical problems. This book recovers new perspectives in front of the reader dealing with turbulence and semiconductors, plasma and thermodynamics, mechanics and quantum optics, nanophysics and astrophysics. The book is addressed to students, engineers and physicists, specialists in theory of probability and statistics, in mathematical modeling and numerical simulations, to everybody who doesn't wish to stay apart from the new mathematical methods becoming more and more popular. Prof. Vladimir V. UCHAIKIN is a known Russian scientist and pedagogue, a Honored Worker of Russian High School, a member of the Russian Academy of Natural Sciences. He is the author of about three hundreds articles and more than a dozen books (mostly in Russian) in Cosmic ray physics, Mathematical physics, Levy stable statistics, Monte Carlo methods with applications to anomalous processes in complex systems of various levels: from quantum dots to the Milky Way galaxy.
Intangible, invisible and worth trillions, risk is everywhere. Its quantification and management are key to the success and failure of individuals, businesses and governments. Whether you're an interested observer or pursuing a career in risk, this book delves into the complex and multi-faceted work that actuaries undertake to quantify, manage and commodify risk-supporting our society and servicing a range of multi-billion-dollar industries. Starting at the most basic level, this book introduces key concepts in actuarial science, insurance and pensions. Through case studies, explanations and mathematical examples, it fosters an understanding of current industry practice. This book celebrates the long history of actuarial science and poses the problems facing actuaries in the future, exploring complex global risks including climate change, aging populations, healthcare models and pandemic epidemiology from an actuarial perspective. It gives practical advice for new and potential actuaries on how to identify an area of work to go into, how best to navigate (and pass!) actuarial exams and how to develop your skills post-qualification. A Risky Business illuminates how actuaries are central to society as we know it, revealing what they do and how they do it. It is the essential primer on actuarial science. |
You may like...
Least-Squares Finite Element Methods
Pavel B. Bochev, Max D Gunzburger
Hardcover
R3,701
Discovery Miles 37 010
Prawitz's Epistemic Grounding - An…
Antonio Piccolomini d'Aragona
Hardcover
R3,106
Discovery Miles 31 060
Algebras, Quivers and Representations…
Aslak Bakke Buan, Idun Reiten, …
Hardcover
R3,423
Discovery Miles 34 230
Computational Methods for Algebraic…
Tor Dokken, Bert Juttler
Hardcover
R2,781
Discovery Miles 27 810
|