![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > General
Cities can be considered to be among the largest and most complex artificial networks created by human beings. Due to the numerous and diverse human-driven activities, urban network topology and dynamics can differ quite substantially from that of natural networks and so call for an alternative method of analysis. The intent of the present monograph is to lay down the theoretical foundations for studying the topology of compact urban patterns, using methods from spectral graph theory and statistical physics. These methods are demonstrated as tools to investigate the structure of a number of real cities with widely differing properties: medieval German cities, the webs of city canals in Amsterdam and Venice, and a modern urban structure such as found in Manhattan. Last but not least, the book concludes by providing a brief overview of possible applications that will eventually lead to a useful body of knowledge for architects, urban planners and civil engineers.
The book presents an updated state-of-the-art overview of the
general aspects and practical applications of the theories of thin
structures, through the interaction of several topics, ranging from
non-linear thin-films, shells, junctions, beams of different
materials and in different contexts (elasticity, plasticity, etc.).
Advanced problems like the optimal design and the modeling of thin
films made of brittle or phase-transforming materials will be
presented as well.
Butterfly in the Quantum World by Indu Satija, with contributions by Douglas Hofstadter, is the first book ever to tell the story of the "Hofstadter butterfly", a beautiful and fascinating graph lying at the heart of the quantum theory of matter. The butterfly came out of a simple-sounding question: What happens if you immerse a crystal in a magnetic field? What energies can the electrons take on? From 1930 onwards, physicists struggled to answer this question, until 1974, when graduate student Douglas Hofstadter discovered that the answer was a graph consisting of nothing but copies of itself nested down infinitely many times. This wild mathematical object caught the physics world totally by surprise, and it continues to mesmerize physicists and mathematicians today. The butterfly plot is intimately related to many other important phenomena in number theory and physics, including Apollonian gaskets, the Foucault pendulum, quasicrystals, the quantum Hall effect, and many more. Its story reflects the magic, the mystery, and the simplicity of the laws of nature, and Indu Satija, in a wonderfully personal style, relates this story, enriching it with a vast number of lively historical anecdotes, many photographs, beautiful visual images, and even poems, making her book a great feast, for the eyes, for the mind and for the soul.
The book presents topics in discrete biomathematics. Mathematics has been widely used in modeling biological phenomena. However, the molecular and discrete nature of basic life processes suggests that their logic follow principles that are intrinsically based on discrete and informational mechanisms. The ultimate reason of polymers, as key element of life, is directly based on the computational power of strings, and the intrinsic necessity of metabolism is related to the mathematical notion of multiset. The switch of the two roots of bioinformatics suggests a change of perspective. In bioinformatics, the biologists ask computer scientists to assist them in processing biological data. Conversely, in infobiotics mathematicians and computer scientists investigate principles and theories yielding new interpretation keys of biological phenomena. Life is too important to be investigated by biologists alone, and though computers are essential to process data from biological laboratories, many fundamental questions about life can be appropriately answered by a perspicacious intervention of mathematicians, computer scientists, and physicists, who will complement the work of chemists, biochemists, biologists, and medical investigators. The volume is organized in seven chapters. The first part is devoted to research topics (Discrete information and life, Strings and genomes, Algorithms and Biorhythms, Life Strategies), the second one to mathematical backgrounds (Numbers and Measures, Languages and Grammars, Combinations and Chances).
Decision & Control in Management Science analyzes emerging decision problems in the management and engineering sciences. It is divided into five parts. The first part explores methodological issues involved in the optimization of deterministic and stochastic dynamical systems. The second part describes approaches to the model energy and environmental systems and draws policy implications related to the mitigation of pollutants. The third part applies quantitative techniques to problems in finance and economics, such as hedging of options, inflation targeting, and equilibrium asset pricing. The fourth part considers a series of problems in production systems. Optimization methods are put forward to provide optimal policies in areas such as inventory management, transfer-line, flow-shop and other industrial problems. The last part covers game theory. Chapters range from theoretical issues to applications in politics and interactions in franchising systems. Decision & Control in Management Science is an excellent reference covering methodological issues and applications in operations research, optimal control, and dynamic games.
Impurities, disorder or amorphous systems - ill-condensed matter - are mostly considered inconveniences in the study of materials, which is otherwise heavily based on idealized perfect crystals. The Kondo effect and the scaling theory of localization are among the fundamental and early discoveries which revealed the novelty hidden in impure or disordered systems. Recent advances in condensed matter physics have emphasized the role of topology, spin-orbit coupling, and certain discrete symmetries such as time reversal in many physical phenomena. These have irreversibly transformed the essential ideas and purview of condensed matter physics, both in theoretical and experimental directions. However, many of these recent developments and their implications are limited to, or by, ideas that pertain to clean systems. This thesis deals with various aspects of these new developments, but in the case of unclean systems. The author introduces new ideas such as amorphous topological insulators, fractalized metals and fractionalized spins.
Elements of Continuum Mechanics and Conservation Laws presents a
systematization of different models in mathematical physics, a
study of the structure of conservation laws, thermodynamical
identities, and connection with criteria for well-posedness of the
corresponding mathematical problems.
The most difficult computational problems nowadays are those of higher dimensions. This research monograph offers an introduction to tensor numerical methods designed for the solution of the multidimensional problems in scientific computing. These methods are based on the rank-structured approximation of multivariate functions and operators by using the appropriate tensor formats. The old and new rank-structured tensor formats are investigated. We discuss in detail the novel quantized tensor approximation method (QTT) which provides function-operator calculus in higher dimensions in logarithmic complexity rendering super-fast convolution, FFT and wavelet transforms. This book suggests the constructive recipes and computational schemes for a number of real life problems described by the multidimensional partial differential equations. We present the theory and algorithms for the sinc-based separable approximation of the analytic radial basis functions including Green's and Helmholtz kernels. The efficient tensor-based techniques for computational problems in electronic structure calculations and for the grid-based evaluation of long-range interaction potentials in multi-particle systems are considered. We also discuss the QTT numerical approach in many-particle dynamics, tensor techniques for stochastic/parametric PDEs as well as for the solution and homogenization of the elliptic equations with highly-oscillating coefficients. Contents Theory on separable approximation of multivariate functions Multilinear algebra and nonlinear tensor approximation Superfast computations via quantized tensor approximation Tensor approach to multidimensional integrodifferential equations
Although the spatial dimension of ecosystem dynamics is now widely recognized, the specific mechanisms behind species patterning in space are still poorly understood and the corresponding theoretical framework is underdeveloped. Going beyond the classical Turing scenario of pattern formation, Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation illustrates how mathematical modeling and numerical simulations can lead to greater understanding of these issues. It takes a unified approach to population dynamics and epidemiology by presenting several ecoepidemiological models where both the basic interspecies interactions of population dynamics and the impact of an infectious disease are explicitly considered. The book first describes relevant phenomena in ecology and epidemiology, provides examples of pattern formation in natural systems, and summarizes existing modeling approaches. The authors then explore nonspatial models of population dynamics and epidemiology. They present the main scenarios of spatial and spatiotemporal pattern formation in deterministic models of population dynamics. The book also addresses the interaction between deterministic and stochastic processes in ecosystem and epidemic dynamics, discusses the corresponding modeling approaches, and examines how noise and stochasticity affect pattern formation. Reviewing the significant progress made in understanding spatiotemporal patterning in ecological and epidemiological systems, this resource shows that mathematical modeling and numerical simulations are effective tools in the study of population ecology and epidemiology.
This book presents a modern and self-contained treatment of the Liapunov method for stability analysis, in the framework of mathematical nonlinear control theory. A Particular focus is on the problem of the existence of Liapunov functions (converse Liapunov theorems) and their regularity, whose interest is especially motivated by applications to automatic control. Many recent results in this area have been collected and presented in a systematic way. Some of them are given in extended, unified versions and with new, simpler proofs. In the 2nd edition of this successful book several new sections were added and old sections have been improved, e.g., about the Zubovs method, Liapunov functions for discontinuous systems and cascaded systems. Many new examples, explanations and figures were added making this book accessible and well readable for engineers as well as mathematicians.
A lot of economic problems can be formulated as constrained
optimizations and equilibration of their solutions. Various
mathematical theories have been supplying economists with
indispensable machineries for these problems arising in economic
theory. Conversely, mathematicians have been stimulated by various
mathematical difficulties raised by economic theories. The series
is designed to bring together those mathematicians who are
seriously interested in getting new challenging stimuli from
economic theories with those economists who are seeking effective
mathematical tools for their research. The editorial board of this
series comprises the following prominent economists and
mathematicians:
This volume is about "Structure." The search for "structure," always the pursuit of sciences within their specific areas and perspectives, is witnessing these days a dra matic revolution. The coexistence and interaction of so many structures (atoms, hu mans, cosmos and all that there is in between) would be unconceivable according to many experts, if there were not, behind it all, some gen eral organizational principle. s that (at least in some asymptotic way) make possible so many equilibria among species and natural objects, fan tastically tuned to an extremely high degree of precision. The evidence accumulates to an increasingly impressive degree; a concrete example comes from physics, whose constant aim always was and is that of searching for "ultimate laws," out of which everything should follow, from quarks to the cosmos. Our notions and philosophy have un dergone major revolutions, whenever the "unthinkable" has been changed by its wonderful endeavours into "fact." Well, it is just from physics that evidence comes: even if the "ultimate" could be reached, it would not in any way be a terminal point. When "complexity" comes into the game, entirely new notions have to be invented; they all have to do with "structure," though this time in a much wider sense than would have been understood a decade or so ago."
Bayesian analyses have made important inroads in modern clinical research due, in part, to the incorporation of the traditional tools of noninformative priors as well as the modern innovations of adaptive randomization and predictive power. Presenting an introductory perspective to modern Bayesian procedures, Elementary Bayesian Biostatistics explores Bayesian principles and illustrates their application to healthcare research. Building on the basics of classic biostatistics and algebra, this easy-to-read book provides a clear overview of the subject. It focuses on the history and mathematical foundation of Bayesian procedures, before discussing their implementation in healthcare research from first principles. The author also elaborates on the current controversies between Bayesian and frequentist biostatisticians. The book concludes with recommendations for Bayesians to improve their standing in the clinical trials community. Calculus derivations are relegated to the appendices so as not to overly complicate the main text. As Bayesian methods gain more acceptance in healthcare, it is necessary for clinical scientists to understand Bayesian principles. Applying Bayesian analyses to modern healthcare research issues, this lucid introduction helps readers make the correct choices in the development of clinical research programs.
This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.
This PhD thesis focuses on the search for flavor-changing neutral currents in the decay of a top quark to an up-type quark (q = u, c) and the Standard Model Higgs boson, where the Higgs boson decays to bb. Further, the thesis presents the combination of this search for top quark pair events with other ATLAS searches - in the course of which the most restrictive bounds to date on tqH interactions were obtained. Following on from the discovery of the Higgs boson, it is particularly important to measure the Yukawa couplings of the Standard Model fermions; these parameters may provide crucial insights to help solve the flavor puzzle and may help reveal the presence of new physics before it is directly observed in experiments.
This book introduces the Vienna Simulator Suite for 3rd-Generation Partnership Project (3GPP)-compatible Long Term Evolution-Advanced (LTE-A) simulators and presents applications to demonstrate their uses for describing, designing, and optimizing wireless cellular LTE-A networks. Part One addresses LTE and LTE-A link level techniques. As there has been high demand for the downlink (DL) simulator, it constitutes the central focus of the majority of the chapters. This part of the book reports on relevant highlights, including single-user (SU), multi-user (MU) and single-input-single-output (SISO) as well as multiple-input-multiple-output (MIMO) transmissions. Furthermore, it summarizes the optimal pilot pattern for high-speed communications as well as different synchronization issues. One chapter is devoted to experiments that show how the link level simulator can provide input to a testbed. This section also uses measurements to present and validate fundamental results on orthogonal frequency division multiplexing (OFDM) transmissions that are not limited to LTE-A. One chapter exclusively deals with the newest tool, the uplink (UL) link level simulator, and presents cutting-edge results. In turn, Part Two focuses on system-level simulations. From early on, system-level simulations have been in high demand, as people are naturally seeking answers when scenarios with numerous base stations and hundreds of users are investigated. This part not only explains how mathematical abstraction can be employed to speed up simulations by several hundred times without sacrificing precision, but also illustrates new theories on how to abstract large urban heterogeneous networks with indoor small cells. It also reports on advanced applications such as train and car transmissions to demonstrate the tools' capabilities.
Observers and Macroeconomic Systems is concerned with the computational aspects of using a control-theoretic approach to the analysis of dynamic macroeconomic systems. The focus is on using a separate model for the development of the control policies. In particular, it uses the observer-based approach whereby the separate model learns to behave in a similar manner to the economic system through output-injections. The book shows how this approach can be used to learn the forward-looking behaviour of economic actors which is a distinguishing feature of dynamic macroeconomic models. It also shows how it can be used in conjunction with low-order models to undertake policy analysis with a large practical econometric model. This overcomes some of the computational problems arising from using just the large econometric models to compute optimal policy trajectories. The work also develops visual simulation software tools that can be used for policy analysis with dynamic macroeconomic systems.
A best-seller in its French edition, the construction of this book is original and its success in the French market demonstrates its appeal. It is based on three principles: 1. An organization of the chapters by families of algorithms : exhaustive search, divide and conquer, etc. At the contrary, there is no chapter only devoted to a systematic exposure of, say, algorithms on strings. Some of these will be found in different chapters. 2. For each family of algorithms, an introduction is given to the mathematical principles and the issues of a rigorous design, with one or two pedagogical examples. 3. For its most part, the book details 150 problems, spanning on seven families of algorithms. For each problem, a precise and progressive statement is given. More important, a complete solution is detailed, with respect to the design principles that have been presented ; often, some classical errors are pointed at. Roughly speaking, two thirds of the book are devoted to the detailed rational construction of the solutions.
He's back! The physicist returns with an entirely new compilation of questions and answers from his long-lived website where laypeople can ask questions about anything physics related. This book focuses on adjectives (practical, beautiful, surprising, cool, frivolous) instead of nouns like the first two books (atoms, photons, quanta, mechanics, relativity). The answers within Physics Is are responses to people looking for answers to fascinating (and often uninformed) questions. It covers topics such as sports, electromagnetism, gravitational theory, special relativity, superheroes, videogames, and science fiction. These books are designed for laypeople and rely heavily on concepts rather than formalism. That said, they keep the physics correct and don't water down, so expert physicists will find this book and its two companion titles fun reads. They may actually recognize similar questions posed to them by friends and family. As with the first two books, Physics Is ends with a chapter with questions from people who think that 'The physicist' is a psychic and from people who think they have the answers to life, the universe and everything.
It is because mathematics is often misunderstood, it is commonly believed it has nothing to say about politics. The high school experience with mathematics, for so many the lasting impression of the subject, suggests that mathematics is the study of numbers, operations, formulas, and manipulations of symbols. Those believing this is the extent of mathematics might conclude mathematics has no relevance to politics. This book counters this impression. The second edition of this popular book focuses on mathematical reasoning about politics. In the search for ideal ways to make certain kinds of decisions, a lot of wasted effort can be averted if mathematics can determine that finding such an ideal is actually impossible in the first place. In the first three parts of this book, we address the following three political questions: (1) Is there a good way to choose winners of elections? (2) Is there a good way to apportion congressional seats? (3) Is there a good way to make decisions in situations of conflict and uncertainty? In the fourth and final part of this book, we examine the Electoral College system that is used in the United States to select a president. There we bring together ideas that are introduced in each of the three earlier parts of the book.
Project management has become a widespread instrument enabling organizations to efficiently master the challenges of steadily shortening product life cycles, global markets and decreasing profit margins. With projects increasing in size and complexity, their planning and control represents one of the most crucial management tasks. This is especially true for scheduling, which is concerned with establishing execution dates for the sub-activities to be performed in order to complete the project. The ability to manage projects where resources must be allocated between concurrent projects or even sub-activities of a single project requires the use of commercial project management software packages. However, the results yielded by the solution procedures included are often rather unsatisfactory. Scheduling of Resource-Constrained Projects develops more efficient procedures, which can easily be integrated into software packages by incorporated programming languages, and thus should be of great interest for practitioners as well as scientists working in the field of project management. The book is divided into two parts. In Part I, the project management process is described and the management tasks to be accomplished during project planning and control are discussed. This allows for identifying the major scheduling problems arising in the planning process, among which the resource-constrained project scheduling problem is the most important. Part II deals with efficient computer-based procedures for the resource-constrained project scheduling problem and its generalized version. Since both problems are NP-hard, the development of such procedures which yield satisfactory solutions in a reasonable amount of computation time is very challenging, and a number of new and very promising approaches are introduced. This includes heuristic procedures based on priority rules and tabu search as well as lower bound methods and branch and bound procedures which can be applied for computing optimal solutions.
This is the second volume in a series of innovative proceedings entirely devoted to the connections between mathematics and computer science. Here mathematics and computer science are directly confronted and joined to tackle intricate problems in computer science with deep and innovative mathematical approaches. The book serves as an outstanding tool and a main information source for a large public in applied mathematics, discrete mathematics and computer science, including researchers, teachers, graduate students and engineers. It provides an overview of the current questions in computer science and the related modern and powerful mathematical methods. The range of applications is very wide and reaches beyond computer science.
For courses in calculus-based physics. Practice makes perfect. The 15th Edition of University Physics with Modern Physics draws on a wealth of data insights from hundreds of faculty and thousands of student users to address one of the biggest challenges for students in introductory physics courses: seeing patterns and making connections between problem types. Students learn to recognise when to use similar steps in solving the same problem type and develop an understanding for problem solving approaches, rather than simply plugging in an equation. This edition addresses students' tendency to focus on the objects, situations, numbers, and questions posed in a problem, rather than recognising the underlying principle or the problem's type. New Key Concept statements at the end of worked examples address this challenge by identifying the main idea used in the solution to help students recognise the underlying concepts and strategy for the given problem. New Key Example Variation Problems appear within new Guided Practice sections and group problems by type to give students practice recognising when problems can be solved in a similar way, regardless of wording or numbers. These scaffolded problem sets help students see patterns, make connections between problems, and build confidence for tackling different problem types when exam time comes.
In this thesis, the author describes the development of a software framework to systematically construct a particular class of weakly coupled free fermionic heterotic string models, dubbed gauge models. In their purest form, these models are maximally supersymmetric (N = 4), and thus only contain superpartners in their matter sector. This feature makes their systematic construction particularly efficient, and they are thus useful in their simplicity. The thesis first provides a brisk introduction to heterotic strings and the spin-structure construction of free fermionic models. Three systematic surveys are then presented, and it is conjectured that these surveys are exhaustive modulo redundancies. Finally, the author presents a collection of metaheuristic algorithms for searching the landscape for models with a user-specified spectrum of phenomenological properties, e.g. gauge group and number of spacetime supersymmetries. Such algorithms provide the groundwork for extended generic free fermionic surveys. |
You may like...
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
A Brief Introduction to Topology and…
Antonio Sergio Teixeira Pires
Paperback
R756
Discovery Miles 7 560
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
A Commentary On Newton's Principia…
John Martin Frederick Wright
Hardcover
R1,048
Discovery Miles 10 480
Mathematics for Physical Chemistry
Robert G. Mortimer, S. M. Blinder
Paperback
R1,402
Discovery Miles 14 020
|