![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > General
Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm-Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg--Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi--Hijmans--De Boer hierarchy of approximations. In Part III the use of algebraic, transformation and decoration methods to obtain exact system information is considered. This is followed by an account of the use of transfer matrices for the location of incipient phase transitions in one-dimensionally infinite models and for exact solutions for two-dimensionally infinite systems. The latter is applied to a general analysis of eight-vertex models yielding as special cases the two-dimensional Ising model and the six-vertex model. The treatment of exact results ends with a discussion of dimer models. In Part IV series methods and real-space renormalization group transformations are discussed. The use of the De Neef-Enting finite-lattice method is described in detail and applied to the derivation of series for a number of model systems, in particular for the Potts model. The use of Pad\'e, differential and algebraic approximants to locate and analyze second- and first-order transitions is described. The realization of the ideas of scaling theory by the renormalization group is presented together with treatments of various approximation schemes including phenomenological renormalization. Part V of the book contains a collection of mathematical appendices intended to minimise the need to refer to other mathematical sources.
The International Symposia on Distributed Autonomous Robotic Systems (DARS) started at Riken, Japan in 1992. Since then, the DARS symposia have been held every two years: in 1994 and 1996 in Japan (Riken, Wako), in 1998 in Germany (Karlsruhe), in 2000 in the USA (Knoxville, TN), in 2002 in Japan (Fukuoka), in 2004 in France (Toulouse), and in 2006 in the USA (Minneapolis, MN). The 9th DARS symposium, which was held during November 17-19 in T- kuba, Japan, hosted 84 participants from 13 countries. The 48 papers presented there were selected through rigorous peer review with a 50% acceptance ratio. Along with three invited talks, they addressed the spreading research fields of DARS, which are classifiable along two streams: theoretical and standard studies of DARS, and interdisciplinary studies using DARS concepts. The former stream includes multi-robot cooperation (task assignment methodology among multiple robots, multi-robot localization, etc.), swarm intelligence, and modular robots. The latter includes distributed sensing, mobiligence, ambient intelligence, and mul- agent systems interaction with human beings. This book not only offers readers the latest research results related to DARS from theoretical studies to application-oriented ones; it also describes the present trends of this field. With the diversity and depth revealed herein, we expect that DARS technologies will flourish soon.
Density functional theory (DFT) has become the standard
workhorse for quantum mechanical simulations as it offers a good
compromise between accuracy and computational cost.
In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.
In recent years there has been a resurgence of interest in the study of delay differential equations motivated largely by new applications in physics, biology, ecology, and physiology. The aim of this monograph is to present a reasonably self-contained account of the advances in the oscillation theory of this class of equations. Throughout, the main topics of study are shown in action, with applications to such diverse problems as insect population estimations, logistic equations in ecology, the survival of red blood cells in animals, integro-differential equations, and the motion of the tips of growing plants. The authors begin by reviewing the basic theory of delay differential equations, including the fundamental results of existence and uniqueness of solutions and the theory of the Laplace and z-transforms. Little prior knowledge of the subject is required other than a firm grounding in the main techniques of differential equation theory. As a result, this book provides an invaluable reference to the recent work both for mathematicians and for all those whose research includes the study of this fascinating class of differential equations.
This book is aimed at researchers, industry professionals and students interested in the broad ranges of disciplines related to condition monitoring of machinery working in non-stationary conditions. Each chapter, accepted after a rigorous peer-review process, reports on a selected, original piece of work presented and discussed at the International Conference on Condition Monitoring of Machinery in Non-stationary Operations, CMMNO'2018, held on June 20 - 22, 2018, in Santander, Spain. The book describes both theoretical developments and a number of industrial case studies, which cover different topics, such as: noise and vibrations in machinery, conditioning monitoring in non-stationary operations, vibro-acoustic diagnosis of machinery, signal processing, application of pattern recognition and data mining, monitoring and diagnostic systems, faults detection, dynamics of structures and machinery, and mechatronic machinery diagnostics.
Drawing examplesfrom mathematics, physics, chemistry, biology, engineering, economics, medicine, politics, and sports, this book illustrates how nonlinear dynamics plays a vital role in our world. Examples cover a wide range from the spread and possible control of communicable diseases, to the lack of predictability in long-range weather forecasting, to competition between political groups and nations. After an introductorychapter that explores what it means to be nonlinear, the book covers the mathematical conceptssuch as limit cycles, fractals, chaos, bifurcations, and solitons, that will be applied throughout the book. Numerous computer simulations and exercises allow students to explore topics in greater depth using the Maple computer algebra system. The mathematical level of the text assumes prior exposure to ordinary differential equations and familiarity with the wave and diffusion equations.No prior knowledge of Maple is assumed. The book may be used at the undergraduate or graduate level to prepare science and engineering students for problems in the "real world," or for self-study by practicing scientists and engineers."
The Dynamics program and handbook allows the reader to explore nonlinear dynamics and chaos by the use of illustrated graphics. It is suitable for research and educational needs. This new edition allows the program = to run 3 times faster on the processes that are time consuming. Other major changes include: 1. There will be an add-your-own equation facility. This means it = will be unnecessary to have a compiler. PD and Lyanpunov exponents and Newton method for finding periodic orbits can all be carried out numerically without adding specific code for partial derivatives. 2. The program will support color postscript. 3. New menu system in which the user is prompted by options when a command is chosen. This means that the program is much easier to learn and to remember in comparison to current version. 4. Mouse support is added. 5. The program will be able to use the expanded memory available on modern PC's. This means pictures will be higher resolution. There are also many minor chan ce much of the source code will be available on the web, although some of ges such as zoom facility and help facility.=20 6. Due to limited spa it willr emain on the disk so that the unix users still have to purchase the book. This will allow minor upgrades for Unix users.
Handbook of Alternative Data in Finance, Volume I motivates and challenges the reader to explore and apply Alternative Data in finance. The book provides a robust and in-depth overview of Alternative Data, including its definition, characteristics, difference from conventional data, categories of Alternative Data, Alternative Data providers, and more. The book also offers a rigorous and detailed exploration of process, application and delivery that should be practically useful to researchers and practitioners alike. Features Includes cutting edge applications in machine learning, fintech, and more Suitable for professional quantitative analysts, and as a resource for postgraduates and researchers in financial mathematics Features chapters from many leading researchers and practitioners.
V-INVEX FUNCTIONS AND VECTOR OPTIMIZATION summarizes and synthesizes an aspect of research work that has been done in the area of Generalized Convexity over the past several decades. Specifically, the book focuses on V-invex functions in vector optimization that have grown out of the work of Jeyakumar and Mond in the 1990?s. V-invex functions are areas in which there has been much interest because it allows researchers and practitioners to address and provide better solutions to problems that are nonlinear, multi-objective, fractional, and continuous in nature. Hence, V-invex functions have permitted work on a whole new class of vector optimization applications. There has been considerable work on vector optimization by some highly distinguished researchers including Kuhn, Tucker, Geoffrion, Mangasarian, Von Neuman, Schaiible, Ziemba, etc. The authors have integrated this related research into their book and demonstrate the wide context from which the area has grown and continues to grow. The result is a well-synthesized, accessible, and usable treatment for students, researchers, and practitioners in the areas of OR, optimization, applied mathematics, engineering, and their work relating to a wide range of problems which include financial institutions, logistics, transportation, traffic management, etc.
The book aims at surveying results in the application of fuzzy sets and fuzzy logic to economics and engineering. New results include fuzzy non-linear regression, fully fuzzified linear programming, fuzzy multi-period control, fuzzy network analysis, each using an evolutionary algorithm; fuzzy queuing decision analysis using possibility theory; fuzzy differential equations; fuzzy difference equations; fuzzy partial differential equations; fuzzy eigenvalues based on an evolutionary algorithm; fuzzy hierarchical analysis using an evolutionary algorithm; fuzzy integral equations. Other important topics covered are fuzzy input-output analysis; fuzzy mathematics of finance; fuzzy PERT (project evaluation and review technique). No previous knowledge of fuzzy sets is needed. The mathematical background is assumed to be elementary calculus.
The book introduces new techniques that imply rigorous lower bounds on the com plexity of some number-theoretic and cryptographic problems. It also establishes certain attractive pseudorandom properties of various cryptographic primitives. These methods and techniques are based on bounds of character sums and num bers of solutions of some polynomial equations over finite fields and residue rings. Other number theoretic techniques such as sieve methods and lattice reduction algorithms are used as well. The book also contains a number of open problems and proposals for further research. The emphasis is on obtaining unconditional rigorously proved statements. The bright side of this approach is that the results do not depend on any assumptions or conjectures. On the downside, the results are much weaker than those which are widely believed to be true. We obtain several lower bounds, exponential in terms of logp, on the degrees and orders of o polynomials; o algebraic functions; o Boolean functions; o linear recurrence sequences; coinciding with values of the discrete logarithm modulo a prime p at sufficiently many points (the number of points can be as small as pI/2+O: ). These functions are considered over the residue ring modulo p and over the residue ring modulo an arbitrary divisor d of p - 1. The case of d = 2 is of special interest since it corresponds to the representation of the rightmost bit of the discrete logarithm and defines whether the argument is a quadratic residue."
This book, part of the seriesContributions in Mathematical and Computational Sciences, reviews recent developments in the theory of vertex operator algebras (VOAs) and their applications to mathematics and physics. The mathematical theory of VOAs originated from the famous monstrous moonshine conjectures of J.H. Conway and S.P. Norton, which predicted a deep relationship between the characters of the largest simple finite sporadic group, the Monster and the theory of modular forms inspired by the observations of J. MacKay and J. Thompson. The contributions are based on lectures delivered at the 2011 conference on Conformal Field Theory, Automorphic Forms and Related Topics, organized by the editors as part of a special program offered at Heidelberg University that summer under the sponsorship of the Mathematics Center Heidelberg (MATCH)."
Kiyosi Ito, the founder of stochastic calculus, is one of the few central figures of the twentieth century mathematics who reshaped the mathematical world. Today stochastic calculus is a central research field with applications in several other mathematical disciplines, for example physics, engineering, biology, economics and finance. The Abel Symposium 2005 was organized as a tribute to the work of Kiyosi Ito on the occasion of his 90th birthday. Distinguished researchers from all over the world were invited to present the newest developments within the exciting and fast growing field of stochastic analysis. The present volume combines both papers from the invited speakers and contributions by the presenting lecturers. A special feature is the Memoirs that Kiyoshi Ito wrote for this occasion. These are valuable pages for both young and established researchers in the field.
This volume is a substantially revised new edition of the earlier book of the same title. Six new chapters (14-19) deal with topics of current interest: multi-component convection diffusion, convection in a compressible fluid, convenction with temperature dependent viscosity and thermal conductivity, penetrative convection, nonlinear stability in ocean circulation models, and numerical solution of eigenvalue problems. The book presents convection studies in a variety of fluid and porous media contexts. It begins at an elementary level and should be accessible to a wide audience of applied mathematicians, physicists, and engineers.
Increasingly, neural networks are used and implemented in a wide range of fields and have become useful tools in probabilistic analysis and prediction theory. This booka "unique in the literaturea "studies the application of neural networks to the analysis of time series of sea data, namely significant wave heights and sea levels. The particular problem examined as a starting point is the reconstruction of missing data, a general problem that appears in many cases of data analysis. Specific topics covered include: * Presentation of general information on the phenomenology of waves and tides, as well as related technical details of various measuring processes used in the study * Description of the model of wind waves (WAM) used to determine the spectral function of waves and predict the behavior of SWH (significant wave heights); a comparison is made of the reconstruction of SWH time series obtained by means of neural network algorithms versus SWH computed by WAM * Principles of artificial neural networks, approximation theory, and extreme-value theory necessary to understand the main applications of the book. * Application of artificial neural networks (ANN) to reconstruct SWH and sea levels (SL) * Comparison of the ANN approach and the approximation operator approach, displaying the advantages of ANN * Examination of extreme-event analysis applied to the time series of sea data in specific locations * Generalizations of ANN to treat analogous problems for other types of phenomena and data This book, a careful blend of theory and applications, is an excellent introduction to the use of ANN, which may encourage readers to try analogous approachesin other important application areas. Researchers, practitioners, and advanced graduate students in neural networks, hydraulic and marine engineering, prediction theory, and data analysis will benefit from the results and novel ideas presented in this useful resource.
The term " nite Fermi systems" usually refers to systems where the fermionic nature of the constituents is of dominating importance but the nite spatial extent also cannot be ignored. Historically the prominent examples were atoms, molecules, and nuclei. These should be seen in contrast to solid-state systems, where an in nite extent is usually a good approximation. Recently, new and different types of nite Fermi systems have become important, most noticeably metallic clusters, quantum dots, fermion traps, and compact stars. The theoretical description of nite Fermi systems has a long tradition and dev- oped over decades from most simple models to highly elaborate methods of ma- body theory. In fact, nite Fermi systems are the most demanding ground for theory as one often does not have any symmetry to simplify classi cation and as a possibly large but always nite particle number requires to take into account all particles. In spite of the practical complexity, most methods rely on simple and basic schemes which can be well understood in simple test cases. We therefore felt it a timely undertaking to offer a comprehensive view of the underlying theoretical ideas and techniques used for the description of such s- tems across physical disciplines. The book demonstrates how theoretical can be successively re ned from the Fermi gas via external potential and mean- eld m- els to various techniques for dealing with residual interactions, while following the universality of such concepts like shells and magic numbers across the application elds.
An easy to read survey of data analysis, linear regression models and analysis of variance. The extensive development of the linear model includes the use of the linear model approach to analysis of variance provides a strong link to statistical software packages, and is complemented by a thorough overview of theory. It is assumed that the reader has the background equivalent to an introductory book in statistical inference. Can be read easily by those who have had brief exposure to calculus and linear algebra. Intended for first year graduate students in business, social and the biological sciences. Provides the student with the necessary statistics background for a course in research methodology. In addition, undergraduate statistics majors will find this text useful as a survey of linear models and their applications.
Andrej V. Cherkaev and Robert V. Kohn In the past twenty years we have witnessed a renaissance of theoretical work on the macroscopic behavior of microscopically heterogeneous mate rials. This activity brings together a number of related themes, including: ( 1) the use of weak convergence as a rigorous yet general language for the discussion of macroscopic behavior; (2) interest in new types of questions, particularly the "G-closure problem," motivated in large part by applications of optimal control theory to structural optimization; (3) the introduction of new methods for bounding effective moduli, including one based on "com pensated compactness"; and (4) the identification of deep links between the analysis of microstructures and the multidimensional calculus of variations. This work has implications for many physical problems involving optimal design, composite materials, and coherent phase transitions. As a result it has received attention and support from numerous scientific communities, including engineering, materials science, and physics as well as mathematics. There is by now an extensive literature in this area. But for various reasons certain fundamental papers were never properly published, circu lating instead as mimeographed notes or preprints. Other work appeared in poorly distributed conference proceedings volumes. Still other work was published in standard books or journals, but written in Russian or French. The net effect is a sort of "gap" in the literature, which has made the subject unnecessarily difficult for newcomers to penetrate."
Elliptic curves have been intensively studied in algebraic geometry and number theory. In recent years they have been used in devising efficient algorithms for factoring integers and primality proving, and in the construction of public key cryptosystems. Elliptic Curve Public Key Cryptosystems provides an up-to-date and self-contained treatment of elliptic curve-based public key cryptology. Elliptic curve cryptosystems potentially provide equivalent security to the existing public key schemes, but with shorter key lengths. Having short key lengths means smaller bandwidth and memory requirements and can be a crucial factor in some applications, for example the design of smart card systems. The book examines various issues which arise in the secure and efficient implementation of elliptic curve systems. Elliptic Curve Public Key Cryptosystems is a valuable reference resource for researchers in academia, government and industry who are concerned with issues of data security. Because of the comprehensive treatment, the book is also suitable for use as a text for advanced courses on the subject.
This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite-element methods instead of passively absorbing the material, as in most standard textbooks. The enlarged English-language edition, based on the original French, also contains a chapter on the approximation steps derived from the description of nature with differential equations and then applied to the specific model to be used. Furthermore, an introduction to tensor calculus using distribution theory offers further insight for readers with different mathematical backgrounds.
Symmetry is at the heart of our understanding of matter. This book tells the fascinating story of the constituents of matter from a common symmetry perspective. The standard model of elementary particles and the periodic table of chemical elements have the common goal to bring order in the bewildering chaos of the constituents of matter. Their success relies on the presence of fundamental symmetries in their core. The purpose of Shattered Symmetry is to share the admiration for the power and the beauty of these symmetries. The reader is taken on a journey from the basic geometric symmetry group of a circle to the sublime dynamic symmetries that govern the motions of the particles. Along the way the theory of symmetry groups is gradually introduced with special emphasis on its use as a classification tool and its graphical representations. This is applied to the unitary symmetry of the eightfold way of quarks, and to the four-dimensional symmetry of the hydrogen atom. The final challenge is to open up the structure of Mendeleev's table which goes beyond the symmetry of the hydrogen atom. Breaking this symmetry to accommodate the multi-electron atoms requires us to leave the common ground of linear algebras and explore the potential of non-linearity.
This thesis presents two analyses of semileptonic b sl+l decays using Flavour Changing Neutral Currents (FCNCs) to test for the presence of new physics and lepton flavour universality, and the equality of couplings for different leptons, which on the basis of experimental evidence is assumed to hold in the Standard Model, free from uncertainties as a result of knowledge of the hadronic matrix elements. It also includes the angular analysis of Lambda_b->Lambda mumu decay and the RK* measurement, both of which are first measurements, not yet performed by any other experiment.
This self-contained book is an up-to-date description of the basic theory of molecular gas dynamics and its various applications. The book, unique in the literature, presents working knowledge, theory, techniques, and typical phenomena in rarefied gases for theoretical development and application. Basic theory is developed in a systematic way and presented in a form easily applied for practical use. In this work, the ghost effect and non-Navier Stokes effects are demonstrated for typical examples B nard and Taylor Couette problems in the context of a new framework. A new type of ghost effect is also discussed. |
You may like...
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
A Brief Introduction to Topology and…
Antonio Sergio Teixeira Pires
Paperback
R756
Discovery Miles 7 560
Measurements and their Uncertainties - A…
Ifan Hughes, Thomas Hase
Hardcover
R2,694
Discovery Miles 26 940
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
On the Principle of Holographic Scaling…
Leo Rodriguez, Shanshan Rodriguez
Hardcover
R1,714
Discovery Miles 17 140
|