Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics > General
This book collects the works presented at the 8th International Conference on Complex Networks (CompleNet) 2017 in Dubrovnik, Croatia, on March 21-24, 2017. CompleNet aims at bringing together researchers and practitioners working in areas related to complex networks. The past two decades has witnessed an exponential increase in the number of publications within this field. From biological systems to computer science, from economic to social systems, complex networks are becoming pervasive in many fields of science. It is this interdisciplinary nature of complex networks that CompleNet aims at addressing. The last decades have seen the emergence of complex networks as the language with which a wide range of complex phenomena in fields as diverse as physics, computer science, and medicine (to name a few) can be properly described and understood. This book provides a view of the state-of-the-art in this dynamic field and covers topics such as network controllability, social structure, online behavior, recommendation systems, and network structure.
Population genetics occupies a central role in a number of important biological and social undertakings. It is fundamental to our understanding of evolutionary processes, of plant and animal breeding programs, and of various diseases of particular importance to mankind. This is the first of a planned two-volume work discussing the mathematical aspects of population genetics, with an emphasis on the evolutionary theory. This first volume draws heavily from the author's classic 1979 edition, which appeared originally in Springer's Biomathematics series. It has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, e.g., the theory of molecular population genetics. This book will appeal to graduate students and researchers in mathematical biology and other mathematically-trained scientists looking to enter the field of population genetics.
This book deals with 2-spinors in general relativity, beginning by developing spinors in a geometrical way rather than using representation theory, which can be a little abstract. This gives the reader greater physical intuition into the way in which spinors behave. The book concentrates on the algebra and calculus of spinors connected with curved space-time. Many of the well-known tensor fields in general relativity are shown to have spinor counterparts. An analysis of the Lanczos spinor concludes the book, and some of the techniques so far encountered are applied to this. Exercises play an important role throughout and are given at the end of each chapter. Readership: Postgraduate level students and researchers.
Applied Mathematics: Body & Soul is a mathematics education reform project developed at Chalmers University of Technology and includes a series of volumes and software. The program is motivated by the computer revolution opening new possibilitites of computational mathematical modeling in mathematics, science and engineering. It consists of a synthesis of Mathematical Analysis (Soul), Numerical Computation (Body) and Application. Volumes I-III present a modern version of Calculus and Linear Algebra, including constructive/numerical techniques and applications intended for undergraduate programs in engineering and science. Further volumes present topics such as Dynamical Systems, Fluid Dynamics, Solid Mechanics and Electro-Magnetics on an advanced undergraduate/graduate level. Volume I (Derivatives and Geometry in R3) presents basics of Calculus starting with the construction of the natural, rational, real and complex numbers, and proceeding to analytic geometry in two and three space dimensions, Lipschitz continuous functions and derivatives, together with a variety of applications. Volume II (Integrals and Geomtery in Rn) develops the Riemann integral as the solution to the problem of determining a function given its derivative, and proceeds to generalizations in the form of initial value problems for general systems of ordinary differential equations, including a variety of applications. Linear algebra including numerics is also presented. Volume III (Calculus in Several Dimensions) presents Calculus in several variables including partial derivatives, multi-dimensional integrals, partial differential equations and finite element methods, together with a variety of applications modeled as systems of partial differential equations. The authors are leading researchers in Computational Mathematics who have written various successful books. Further information on Applied Mathematics: Body and Soul can be found at http://www.phi.chalmers.se/bodysoul/.
This book describes a novel methodology for studying algorithmic skills, intended as cognitive activities related to rule-based symbolic transformation, and argues that some human computational abilities may be interpreted and analyzed as genuine examples of extended cognition. It shows that the performance of these abilities relies not only on innate neurocognitive systems or language-related skills, but also on external tools and general agent-environment interactions. Further, it asserts that a low-level analysis, based on a set of core neurocognitive systems linking numbers and language, is not sufficient to explain some specific forms of high-level numerical skills, like those involved in algorithm execution. To this end, it reports on the design of a cognitive architecture for modeling all the relevant features involved in the execution of algorithmic strategies, including external tools, such as paper and pencils. The first part of the book discusses the philosophical premises for endorsing and justifying a position in philosophy of mind that links a modified form of computationalism with some recent theoretical and scientific developments, like those introduced by the so-called dynamical approach to cognition. The second part is dedicated to the description of a Turing-machine-inspired cognitive architecture, expressly designed to formalize all kinds of algorithmic strategies.
OndrejMajer, Ahti-VeikkoPietarinen, andTeroTulenheimo 1 Games and logic in philosophy Recent years have witnessed a growing interest in the unifying methodo- gies over what have been perceived as pretty disparate logical 'systems', or else merely an assortment of formal and mathematical 'approaches' to phi- sophical inquiry. This development has largely been fueled by an increasing dissatisfaction to what has earlier been taken to be a straightforward outcome of 'logical pluralism' or 'methodological diversity'. These phrases appear to re ect the everyday chaos of our academic pursuits rather than any genuine attempt to clarify the general principles underlying the miscellaneous ways in which logic appears to us. But the situation is changing. Unity among plurality is emerging in c- temporary studies in logical philosophy and neighbouring disciplines. This is a necessary follow-up to the intensive research into the intricacies of logical systems and methodologies performed over the recent years. The present book suggests one such peculiar but very unrestrained meth- ological perspective over the eld of logic and its applications in mathematics, language or computation: games. An allegory for opposition, cooperation and coordination, games are also concrete objects of formal study.
Intended as a textbook for courses in computational fluid dynamics at the senior undergraduate or graduate level, this book is a follow-up to the book Fundamentals of Computational Fluid Dynamics by the same authors, which was published in the series Scientific Computation in 2001. Whereas the earlier book concentrated on the analysis of numerical methods applied to model equations, this new book concentrates on algorithms for the numerical solution of the Euler and Navier-Stokes equations. It focuses on some classical algorithms as well as the underlying ideas based on the latest methods. A key feature of the book is the inclusion of programming exercises at the end of each chapter based on the numerical solution of the quasi-one-dimensional Euler equations and the shock-tube problem. These exercises can be included in the context of a typical course and sample solutions are provided in each chapter, so readers can confirm that they have coded the algorithms correctly.
This book offers an essential review of central theories, current research and applications in the field of numerical representations of ordered structures. It is intended as a tribute to Professor Ghanshyam B. Mehta, one of the leading specialists on the numerical representability of ordered structures, and covers related applications to utility theory, mathematical economics, social choice theory and decision-making. Taken together, the carefully selected contributions provide readers with an authoritative review of this research field, as well as the knowledge they need to apply the theories and methods in their own work.
Leading scientists discuss the most recent physical and experimental results in the physics of Bose-Einstein condensate theory, the theory of nonlinear lattices (including quantum and nonlinear lattices), and nonlinear optics and photonics. Classical and quantum aspects of the dynamics of nonlinear waves are considered. The contributions focus on the Gross-Pitaevskii equation and on the quantum nonlinear Schr dinger equation. Recent experimental results on atomic condensates and hydrogen bonded systems are reviewed. Particular attention is given to nonlinear matter waves in periodic potential.
"AutomaticControl of Atmospheric and Space Flight Vehicles" is perhaps the firstbook on the market to present a unified and straightforwardstudyof the design and analysis of automatic control systems for both atmospheric and space flight vehicles.Covering basic control theory and design concepts, it is meantas a textbook for senior undergraduate and graduate students in moderncourses on flight control systems. In addition to the basics of flight control, this book covers a number ofupper-level topicsand will therefore be of interest not only to advanced students, but also toresearchers and practitioners in aeronautical engineering, applied mathematics, and systems/control theory."
This book presents simple interdisciplinary stochastic models meant as a gentle introduction to the field of non-equilibrium statistical physics. It focuses on the analysis of two-state models with cooperative effects, which are versatile enough to be applied to many physical and social systems. The book also explores a variety of mathematical techniques to solve the master equations that govern these models: matrix theory, empty-interval methods, mean field theory, a quantum approach, and mapping onto classical Ising models. The models discussed are at the confluence of nanophysics, biology, mathematics, and the social sciences and provide a pedagogical path toward understanding the complex dynamics of particle self-assembly with the tools of statistical physics.
Econometric theory, as presented in textbooks and the econometric literature generally, is a somewhat disparate collection of findings. Its essential nature is to be a set of demonstrated results that increase over time, each logically based on a specific set of axioms or assumptions, yet at every moment, rather than a finished work, these inevitably form an incomplete body of knowledge. The practice of econometric theory consists of selecting from, applying, and evaluating this literature, so as to test its applicability and range. The creation, development, and use of computer software has led applied economic research into a new age. This book describes the history of econometric computation from 1950 to the present day, based upon an interactive survey involving the collaboration of the many econometricians who have designed and developed this software. It identifies each of the econometric software packages that are made available to and used by economists and econometricians worldwide.
* Metivier is an expert in the field of pdes/math physics, with a particular emphasis on shock waves. * New monograph focuses on mathematical methods, models, and applications of boundary layers, present in many problems of physics, engineering, fluid mechanics. * Metivier has good Birkhauser track record: one of the main authors of "Advances in the Theory of Shock Waves" (Freistuehler/Szepessy, eds, 4187-4). * Manuscript endorsed by N. Bellomo, MSSET series editor...should be a good sell to members of MSSET community, who by-in-large are based in Europe. * Included are self-contained introductions to different topics such as hyperbolic boundary value problems, parabolic systems, WKB methods, construction of profiles, introduction to the theory of Evans' functions, and energy methods with Kreiss' symmetrizers.
This book covers high-transition temperature (Tc) s-wave superconductivity and the neighboring Mott insulating phase in alkali-doped fullerides. The author presents (1) a unified theoretical description of the phase diagram and (2) a nonempirical calculation of Tc. For these purposes, the author employs an extension of the DFT+DMFT (density-functional theory + dynamical mean-field theory). He constructs a realistic electron-phonon-coupled Hamiltonian with a newly formulated downfolding method. The Hamiltonian is analyzed by means of the extended DMFT. A notable aspect of the approach is that it requires only the crystal structure as a priori knowledge. Remarkably, the nonempirical calculation achieves for the first time a quantitative reproduction of the experimental phase diagram including the superconductivity and the Mott phase. The calculated Tc agrees well with the experimental data, with the difference within 10 K. The book provides details of the computational scheme, which can also be applied to other superconductors and other phonon-related topics. The author clearly describes a superconducting mechanism where the Coulomb and electron -phonon interactions show an unusual cooperation in the superconductivity thanks to the Jahn-Teller nature of the phonons.
The main focus of this book is on different topics in probability theory, partial differential equations and kinetic theory, presenting some of the latest developments in these fields. It addresses mathematical problems concerning applications in physics, engineering, chemistry and biology that were presented at the Third International Conference on Particle Systems and Partial Differential Equations, held at the University of Minho, Braga, Portugal in December 2014. The purpose of the conference was to bring together prominent researchers working in the fields of particle systems and partial differential equations, providing a venue for them to present their latest findings and discuss their areas of expertise. Further, it was intended to introduce a vast and varied public, including young researchers, to the subject of interacting particle systems, its underlying motivation, and its relation to partial differential equations. This book will appeal to probabilists, analysts and those mathematicians whose work involves topics in mathematical physics, stochastic processes and differential equations in general, as well as those physicists whose work centers on statistical mechanics and kinetic theory.
Eleven carefully selected, peer-reviewed contributions from the Virtual Conference on Computational Science (VCCS-2016) are featured in this edited book of proceedings. VCCS-2016, an annual meeting, was held online from 1st to 31st August 2016. The theme of the conference was "Computational Thinking for the Advancement of Society" and it matched the paradigm shift in the way we think. VCCS-2016 was attended by 100 participants from 20 countries. The chapters reflect a wide range of fundamental and applied research applying computational methods.
This book presents a deep spectrum of musical, mathematical, physical, and philosophical perspectives that have emerged in this field at the intersection of music and mathematics. In particular the contributed chapters introduce advanced techniques and concepts from modern mathematics and physics, deriving from successes in domains such as Topos theory and physical string theory. The authors include many of the leading researchers in this domain, and the book will be of value to researchers working in computational music, particularly in the areas of counterpoint, gesture, and Topos theory.
Simulation of materials at the atomistic level is an important tool in studying microscopic structures and processes. The atomic interactions necessary for the simulations are correctly described by Quantum Mechanics, but the size of systems and the length of processes that can be modelled are still limited. The framework of Gaussian Approximation Potentials that is developed in this thesis allows us to generate interatomic potentials automatically, based on quantum mechanical data. The resulting potentials offer several orders of magnitude faster computations, while maintaining quantum mechanical accuracy. The method has already been successfully applied for semiconductors and metals.
Applied Mathematics: Body & Soul is a mathematics education reform project developed at Chalmers University of Technology and includes a series of volumes and software. The program is motivated by the computer revolution opening new possibilitites of computational mathematical modeling in mathematics, science and engineering. It consists of a synthesis of Mathematical Analysis (Soul), Numerical Computation (Body) and Application. Volumes I-III present a modern version of Calculus and Linear Algebra, including constructive/numerical techniques and applications intended for undergraduate programs in engineering and science. Further volumes present topics such as Dynamical Systems, Fluid Dynamics, Solid Mechanics and Electro-Magnetics on an advanced undergraduate/graduate level. Volume I (Derivatives and Geometry in R3) presents basics of Calculus starting with the construction of the natural, rational, real and complex numbers, and proceeding to analytic geometry in two and three space dimensions, Lipschitz continuous functions and derivatives, together with a variety of applications. Volume II (Integrals and Geomtery in Rn) develops the Riemann integral as the solution to the problem of determining a function given its derivative, and proceeds to generalizations in the form of initial value problems for general systems of ordinary differential equations, including a variety of applications. Linear algebra including numerics is also presented. Volume III (Calculus in Several Dimensions) presents Calculus in several variables including partial derivatives, multi-dimensional integrals, partial differential equations and finite element methods, together with a variety of applications modeled as systems of partial differential equations. The authors are leading researchers in Computational Mathematics who have written various successful books. Further information on Applied Mathematics: Body and Soul can be found at http://www.phi.chalmers.se/bodysoul/.
This monographcovers dynamical inverse problems, that is problems whose data are the values of wave fields. It deals with the problem of determination of one or more coefficients of a hyperbolic equation or a system of hyperbolic equations. The desired coefficients are functions of point. Most attention is given to the case where the required functions depend only on one coordinate. The first chapter of the book deals mainly with methods of solution of one-dimensional inverse problems. The second chapter focuses on scalar inverse problems of wave propagation in a layered medium. In the final chapter inverse problems for elasticity equations in stratified media and acoustic equations for moving media are given.
The book provides highly specialized researchers and practitioners with a major contribution to mathematical models' developments for energy systems. First, dynamic process simulation models based on mixture flow and two-fluid models are developed for combined-cycle power plants, pulverised coal-fired power plants, concentrated solar power plant and municipal waste incineration. Operation data, obtained from different power stations, are used to investigate the capability of dynamic models to predict the behaviour of real processes and to analyse the influence of modeling assumptions on simulation results. Then, a computational fluid dynamics (CFD) simulation programme, so-called DEMEST, is developed. Here, the fluid-solid, particle-particle and particle-wall interactions are modeled by tracking all individual particles. To this purpose, the deterministic Euler-Lagrange/Discrete Element Method (DEM) is applied and further improved. An emphasis is given to the determination of inter-phase values, such as volumetric void fraction, momentum and heat transfers, using a new procedure known as the offset-method and to the particle-grid method allowing the refinement of the grid resolution independently from particle size. Model validation is described in detail. Moreover, thermochemical reaction models for solid fuel combustion are developed based on quasi-single-phase, two-fluid and Euler-Lagrange/MP-PIC models. Measurements obtained from actual power plants are used for validation and comparison of the developed numerical models.
The present volume celebrates the 60th birthday of Professor Giovanni Paolo Galdi and honors his remarkable contributions to research in the ?eld of Mathematical Fluid Mechanics. The book contains a collection of 35 peer reviewed papers, with authors from 20 countries, re?ecting the worldwide impact and great inspiration by his work over the years. These papers were selected from invited lectures and contributed talks presented at the International Conference on Mathematical Fluid Mechanics held in Estoril, Portugal, May 21-25, 2007 and organized on the oc- sion of Professor Galdi's 60th birthday. We express our gratitude to all the authors and reviewers for their important contributions. Professor Galdi devotes his career to research on the mathematical analysis of the Navier-Stokes equations and non-Newtonian ?ow problems, with special emphasis on hydrodynamic stability and ?uid-particle interactions, impressing the worldwide mathematical communities with his results. His numerous contributions have laid down signi?cant milestones in these ?elds, with a great in?uence on interdis- plinary research communities. He has advanced the careers of numerous young researchers through his generosity and encouragement, some directly through int- lectual guidance and others indirectly by pairing them with well chosen senior c- laborators. A brief review of Professor Galdi's activities and some impressions by colleagues and friends are included here.
Propelled by the success of the sequencing of the human and many related genomes, molecular and cellular biology has delivered significant scientific breakthroughs. Mathematics (broadly defined) continues to play a major role in this effort, helping to discover the secrets of life by working collaboratively with bench biologists, chemists and physicists. Because of its outstanding record of interdisciplinary research and training, the IMA was an ideal venue for the 2007-2008 IMA thematic year on Mathematics of Molecular and Cellular Biology. The kickoff event for this thematic year was a tutorial on Mathematics of Nucleic Acids, followed by the workshop Mathematics of Molecular and Cellular Biology, held September 15--21 at the IMA. This volume is dedicated to the memory of Nicholas R. Cozzarelli, a dynamic leader who fostered research and training at the interface between mathematics and molecular biology. It contains a personal remembrance of Nick Cozzarelli, plus 15 papers contributed by workshop speakers. The papers give an overview of state-of-the-art mathematical approaches to the understanding of DNA structure and function, and the interaction of DNA with proteins that mediate vital life processes.
This thesis details significant improvements in the understanding of the nuclear EMC effect and nuclear shadowing in neutrino physics, and makes substantial comparisons with electron scattering physics. Specifically, it includes the first systematic study of the EMC ratios of carbon, iron and lead to plastic scintillator of neutrinos. The analysis presented provides the best evidence to date that the EMC effect is similar between electrons and neutrinos within the sensitivity of the data. Nuclear shadowing is measured systematically for the first time with neutrinos. In contrast with the data on the EMC effect, the data on nuclear shadowing support the conclusion that nuclear shadowing may be stronger for neutrinos than it is for electrons. This conclusion points to interesting new nuclear physics.
Applied Mathematics: Body & Soul is a mathematics education reform project developed at Chalmers University of Technology and includes a series of volumes and software. The program is motivated by the computer revolution opening new possibilitites of computational mathematical modeling in mathematics, science and engineering. It consists of a synthesis of Mathematical Analysis (Soul), Numerical Computation (Body) and Application. Volumes I-III present a modern version of Calculus and Linear Algebra, including constructive/numerical techniques and applications intended for undergraduate programs in engineering and science. Further volumes present topics such as Dynamical Systems, Fluid Dynamics, Solid Mechanics and Electro-Magnetics on an advanced undergraduate/graduate level. Volume I (Derivatives and Geometry in R3) presents basics of Calculus starting with the construction of the natural, rational, real and complex numbers, and proceeding to analytic geometry in two and three space dimensions, Lipschitz continuous functions and derivatives, together with a variety of applications. Volume II (Integrals and Geomtery in Rn) develops the Riemann integral as the solution to the problem of determining a function given its derivative, and proceeds to generalizations in the form of initial value problems for general systems of ordinary differential equations, including a variety of applications. Linear algebra including numerics is also presented. Volume III (Calculus in Several Dimensions) presents Calculus in several variables including partial derivatives, multi-dimensional integrals, partial differential equations and finite element methods, together with a variety of applications modeled as systems of partial differential equations. The authors are leading researchers in Computational Mathematics who have written various successful books. Further information on Applied Mathematics: Body and Soul can be found at http://www.phi.chalmers.se/bodysoul/. |
You may like...
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
A Commentary On Newton's Principia…
John Martin Frederick Wright
Hardcover
R1,025
Discovery Miles 10 250
View of Sir Isaac Newton's Philosophy
Henry 1694-1771 Pemberton
Hardcover
R994
Discovery Miles 9 940
|