![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > General
The Palm theory and the Loynes theory of stationary systems are the two pillars of the modern approach to queuing. This book, presenting the mathematical foundations of the theory of stationaryqueuing systems, contains a thorough treatment of both of these. This approach helps to clarify the picture, in that it separates the task of obtaining the key system formulas from that of proving convergence to a stationary state and computing its law. The theory is constantly illustrated by classical results and models: Pollaczek-Khintchin and Tacacs formulas, Jackson and Gordon-Newell networks, multiserver queues, blocking queues, loss systems etc., but it also contains recent and significant examples, where the tools developed turn out to be indispensable. Several other mathematical tools which are useful within this approach are also presented, such as the martingale calculus for point processes, or stochastic ordering for stationary recurrences. This thoroughly revised second edition contains substantial additions - in particular, exercises and their solutions - rendering this now classic reference suitable for use as a textbook.
This second edition is an enlarged, completely updated, and extensively revised version of the authoritative first edition. It is devoted to the detailed study of illuminating specific problems of nonlinear elasticity, directed toward the scientist, engineer, and mathematician who wish to see careful treatments of precisely formulated problems. Special emphasis is placed on role of nonlinear material response. The mathematical tools from nonlinear analysis are given self-contained presentations where they are needed. This book begins with chapters on (geometrically exact theories of) strings, rods, and shells, and on the applications of bifurcation theory and the calculus of variations to problems for these bodies. The book continues with chapters on tensors, three-dimensional continuum mechanics, three-dimensional elasticity, large-strain plasticity, general theories of rods and shells, and dynamical problems. Each chapter contains a wealth of interesting, challenging, and tractable exercises.
This book covers high-transition temperature (Tc) s-wave superconductivity and the neighboring Mott insulating phase in alkali-doped fullerides. The author presents (1) a unified theoretical description of the phase diagram and (2) a nonempirical calculation of Tc. For these purposes, the author employs an extension of the DFT+DMFT (density-functional theory + dynamical mean-field theory). He constructs a realistic electron-phonon-coupled Hamiltonian with a newly formulated downfolding method. The Hamiltonian is analyzed by means of the extended DMFT. A notable aspect of the approach is that it requires only the crystal structure as a priori knowledge. Remarkably, the nonempirical calculation achieves for the first time a quantitative reproduction of the experimental phase diagram including the superconductivity and the Mott phase. The calculated Tc agrees well with the experimental data, with the difference within 10 K. The book provides details of the computational scheme, which can also be applied to other superconductors and other phonon-related topics. The author clearly describes a superconducting mechanism where the Coulomb and electron -phonon interactions show an unusual cooperation in the superconductivity thanks to the Jahn-Teller nature of the phonons.
This volume presentsa selection of survey and research articles based on invited lectures and contributed talks presented at the Workshop on Fluid Dynamics in Porous Media that was held in Coimbra, Portugal, inSeptember 12-14, 2011. The contributions are devoted to mathematical modeling, numerical simulation and their applications, providing the readers a state-of-the-art overview on the latest findings and new challenges on the topic. The book includes research work of worldwide recognized leaders in their respective fields and presents advances in both theory and applications, making it appealing to a vast range of audience, in particular mathematicians, engineers and physicists."
Based on the author's lecture notes and research, this well-illustrated and comprehensive text is one of the first to provide an introduction to image registration with particular emphasis on numerical methods in medical imaging. Ideal for researchers in industry and academia, it is also a suitable study guide for graduate mathematicians, computer scientists, engineers, medical physicists, and radiologists. Image registration is utilised whenever information obtained from different viewpoints needs to be combined or compared and unwanted distortion needs to be eliminated. For example, CCTV images, ultrasound images, brain scan images, fingerprint and retinal scanning. Modersitzki's book provides a systematic introduction to the theoretical, practical, and numerical aspects of image registration, with special emphasis on medical applications. Various techniques are described, discussed and compared using numerous illustrations. The text starts with an introduction to the mathematical principles and the motivating example of the Human Neuroscanning Project whose aim is to build an atlas of the human brain through reconstructing essential information out of deformed images of sections of a prepared brain. The introduction is followed by coverage of parametric image registrations such as landmark based, principal axes based, and optimal affine linear registration. Basic distance measures like sum of squared differences, correlation, and mutual information are also discussed. The next section is devoted to state-of-the-art non-parametric image registrations where general variational based framework for image registration is presented and used to describe and compare well-known and new image registration techniques. Finally, efficient numerical schemes for the underlying partial differential equations are presented and discussed. This text treats the basic mathematical principles, including aspects from approximation theory, image processing, numerics, partial differential equations, and statistics, with a strong focus on numerical methods in image processing. Providing a systematic and general framework for image registration, the book not only presents state-of-the-art concepts but also summarises and classifies the numerous techniques to be found in the literature.
This concise, fast-paced text introduces the concepts and applications behind plane networks. It presents fundamental material from linear algebra and differential equations, and offers several different applications of the continuous theory. Practical problems, supported by MATLAB files, underscore the theory; additional material can be downloaded from the author's website.
Methods of global analysis and stochastic analysis are most often applied in mathematical physics as separate entities, thus forming important directions in the field. However, while combination of the two subject areas is rare, it is fundamental for the consideration of a broader class of problems. This book develops methods of Global Analysis and Stochastic Analysis such that their combination allows one to have a more or less common treatment for areas of mathematical physics that traditionally are considered as divergent and requiring different methods of investigation. Global and Stochastic Analysis with Applications to Mathematical Physics covers branches of mathematics that are currently absent in monograph form. Through the demonstration of new topics of investigation and results, both in traditional and more recent problems, this book offers a fresh perspective on ordinary and stochastic differential equations and inclusions (in particular, given in terms of Nelson's mean derivatives) on linear spaces and manifolds. Topics covered include classical mechanics on non-linear configuration spaces, problems of statistical and quantum physics, and hydrodynamics. A self-contained book that provides a large amount of preliminary material and recent results which will serve to be a useful introduction to the subject and a valuable resource for further research. It will appeal to researchers, graduate and PhD students working in global analysis, stochastic analysis and mathematical physics.
This volume explores the emerging and current, cutting-edge theories and methods of modeling, optimization, dynamics and bio economy. It provides an overview of the main issues, results and open questions in these fields as well as covers applications to biology, economy, energy, industry, physics, psychology and finance. The majority of the contributed papers for this volume come from the participants of the International Conference on Modeling, Optimization and Dynamics (ICMOD 2010), a satellite conference of EURO XXIV Lisbon 2010, which took place at Faculty of Sciences of University of Porto, Portugal and from the Berkeley Bio economy Conference 2012, at the University of California, Berkeley, USA.
The book focuses classical oligopoly theory as developed in 1840-1940. By the end of this period oligopoly came under the spell of game theory in its probabilistic equilibrium format. Work by Cournot, von Stackelberg, Palander, and Hotelling, causal and dynamic in essence, but ignored, is reconsidered in the light of modern dynamics using topology and numerics. As particular features, von Stackelberg leadership is included in the dynamic Cournot model, the Hotelling problem is solved with elastic demand, thus skipping the absurd idea of quadratic transportation costs. Further, it is shown that the celebrated destabilisation of Cournot equilibrium under increased competition is due to mistakenly assuming constant returns, and that the whole idea of rational expectations is untenable in dynamic oligopoly. Early original ideas in oligopoly theory, such as coexistence and multiplicity of attractors are focused again after many undeserved decades of oblivion.
Resonances are ubiquitous in dynamical systems with many degrees of freedom. They have the basic effect of introducing slow-fast behavior in an evolutionary system which, coupled with instabilities, can result in highly irregular behavior. This book gives a unified treatment of resonant problems with special emphasis on the recently discovered phenomenon of homoclinic jumping. After a survey of the necessary background, a general finite dimensional theory of homoclinic jumping is developed and illustrated with examples. The main mechanism of chaos near resonances is discussed in both the dissipative and the Hamiltonian context. Previously unpublished new results on universal homoclinic bifurcations near resonances, as well as on multi-pulse Silnikov manifolds are described. The results are applied to a variety of different problems, which include applications from beam oscillations, surface wave dynamics, nonlinear optics, atmospheric science and fluid mechanics. The theory is further used to study resonances in Hamiltonian systems with applications to molecular dynamics and rigid body motion. The final chapter contains an infinite dimensional extension of the finite dimensional theory, with application to the perturbed nonlinear Schrodinger equation and coupled NLS equations."
The concepts and techniques presented in this volume originated from the fields of dynamics, statistics, control theory, computer science and informatics, and are applied to novel and innovative real-world applications. Over the past few decades, the use of dynamic systems, control theory, computing, data mining, machine learning and simulation has gained the attention of numerous researchers from all over the world. Admirable scientific projects using both model-free and model-based methods coevolved at today's research centers and are introduced in conferences around the world, yielding new scientific advances and helping to solve important real-world problems. One important area of progress is the bioeconomy, where advances in the life sciences are used to produce new products in a sustainable and clean manner. In this book, scientists from all over the world share their latest insights and important findings in the field. The majority of the contributed papers for this volume were written by participants of the 3rd International Conference on Dynamics, Games and Science, DGSIII, held at the University of Porto in February 2014, and at the Berkeley Bioeconomy Conference at the University of California at Berkeley in March 2014. The aim of the project of this book "Modeling, Dynamics, Optimization and Bioeconomics II" follows the same aim as its companion piece, "Modeling, Dynamics, Optimization and Bioeconomics I," namely, the exploration of emerging and cutting-edge theories and methods for modeling, optimization, dynamics and bioeconomy.
This book describes a novel methodology for studying algorithmic skills, intended as cognitive activities related to rule-based symbolic transformation, and argues that some human computational abilities may be interpreted and analyzed as genuine examples of extended cognition. It shows that the performance of these abilities relies not only on innate neurocognitive systems or language-related skills, but also on external tools and general agent-environment interactions. Further, it asserts that a low-level analysis, based on a set of core neurocognitive systems linking numbers and language, is not sufficient to explain some specific forms of high-level numerical skills, like those involved in algorithm execution. To this end, it reports on the design of a cognitive architecture for modeling all the relevant features involved in the execution of algorithmic strategies, including external tools, such as paper and pencils. The first part of the book discusses the philosophical premises for endorsing and justifying a position in philosophy of mind that links a modified form of computationalism with some recent theoretical and scientific developments, like those introduced by the so-called dynamical approach to cognition. The second part is dedicated to the description of a Turing-machine-inspired cognitive architecture, expressly designed to formalize all kinds of algorithmic strategies.
Is the behaviour of a crowd in an emergency situation predictable? Are the different patterns occurring in pedestrian flow based on common rules? How does panic change human reactions? These and other questions have been the scope of the international conference on Pedestrian and Evacuation Dynamics. This book contains elaborate manuscripts written by scientists as well as practitioners from various disciplines: architecture, civil, naval and fire safety engineering, physics, computer science and mathematics. There has been considerable progress over the last decade and the central topic of human motion and behaviour has come more and more into the centre of interest, mainly due to increasing computer power and the development of new simulation models. This is the first conference dealing with modelling and simulation of pedestrian and crowd movement as well as the dynamical aspects of evacuation processes.
This book reflects a significant part of authors' research activity dur ing the last ten years. The present monograph is constructed on the results obtained by the authors through their direct cooperation or due to the authors separately or in cooperation with other mathematicians. All these results fit in a unitary scheme giving the structure of this work. The book is mainly addressed to researchers and scholars in Pure and Applied Mathematics, Mechanics, Physics and Engineering. We are greatly indebted to Viorica Venera Motreanu for the careful reading of the manuscript and helpful comments on important issues. We are also grateful to our Editors of Kluwer Academic Publishers for their professional assistance. Our deepest thanks go to our numerous scientific collaborators and friends, whose work was so important for us. D. Motreanu and V. Radulescu IX Introduction The present monograph is based on original results obtained by the authors in the last decade. This book provides a comprehensive expo sition of some modern topics in nonlinear analysis with applications to the study of several classes of boundary value problems. Our framework includes multivalued elliptic problems with discontinuities, variational inequalities, hemivariational inequalities and evolution problems. The treatment relies on variational methods, monotonicity principles, topo logical arguments and optimization techniques. Excepting Sections 1 and 3 in Chapter 1 and Sections 1 and 3 in Chapter 2, the material is new in comparison with any other book, representing research topics where the authors contributed. The outline of our work is the following."
This book encompasses a wide range of mathematical concepts
relating to regularly repeating surface decoration from basic
principles of symmetry to more complex issues of graph theory,
group theory and topology. It presents a comprehensive means of
classifying and constructing patterns and tilings. The
classification of designs is investigated and discussed forming a
broad basis upon which designers may build their own ideas. A wide
range of original illustrative material is included.
The field of phase transitions and critical phenomena continues to
be active in research, producing a steady stream of interesting and
fruitful results. It has moved into a central place in condensed
matter studies.
In recent years, the usual optimisation techniques, which have proved so useful in microeconomic theory, have been extended to incorporate more powerful topological and differential methods, and these methods have led to new results on the qualitative behaviour of general economic and political systems. These developments have necessarily resulted in an increase in the degree of formalism in the publications in the academic journals. This formalism can often deter graduate students. The progression of ideas presented in this book will familiarize the student with the geometric concepts underlying these topological methods, and, as a result, make mathematical economics, general equilibrium theory, and social choice theory more accessible.
"Fractional Dynamics and Control" provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science.
The chapters in this volume, and the volume itself, celebrate the life and research of Roberto Tempo, a leader in the study of complex networked systems, their analysis and control under uncertainty, and robust designs. Contributors include authorities on uncertainty in systems, robustness, networked and network systems, social networks, distributed and randomized algorithms, and multi-agent systems-all fields that Roberto Tempo made vital contributions to. Additionally, at least one author of each chapter was a research collaborator of Roberto Tempo's. This volume is structured in three parts. The first covers robustness and includes topics like time-invariant uncertainties, robust static output feedback design, and the uncertainty quartet. The second part is focused on randomization and probabilistic methods, which covers topics such as compressive sensing, and stochastic optimization. Finally, the third part deals with distributed systems and algorithms, and explores matters involving mathematical sociology, fault diagnoses, and PageRank computation. Each chapter presents exposition, provides new results, and identifies fruitful future directions in research. This book will serve as a valuable reference volume to researchers interested in uncertainty, complexity, robustness, optimization, algorithms, and networked systems.
This volume begins with a description of Alladi Ramakrishnan's remarkable scientific career and his grand vision that led to the creation of The Institute of Mathematical Sciences (MATSCIENCE), in Madras (now Chennai), India, in 1962. The lists of his research publications, his PhD students, and other relevant facts relating to his eventful career are included. The inclusion of both research and survey articles by leading mathematicians, statisticians, and physicists who got to know Alladi Ramakrishnan over the years and admired his significant contributions to research and to the scientific profession, have been written and dedicated in this volume to Ramakrishnan's memory.
This thesis presents a new method for following evolving interactions between coupled oscillatory systems of the kind that abound in nature. Examples range from the subcellular level, to ecosystems, through climate dynamics, to the movements of planets and stars. Such systems mutually interact, adjusting their internal clocks, and may correspondingly move between synchronized and non-synchronized states. The thesis describes a way of using Bayesian inference to exploit the presence of random fluctuations, thus analyzing these processes in unprecedented detail. It first develops the basic theory of interacting oscillators whose frequencies are non-constant, and then applies it to the human heart and lungs as an example. Their coupling function can be used to follow with great precision the transitions into and out of synchronization. The method described has the potential to illuminate the ageing process as well as to improve diagnostics in cardiology, anesthesiology and neuroscience, and yields insights into a wide diversity of natural processes.
This IMA Volume in Mathematics and its Applications ESSAYS ON MATHEMATICAL ROBOTICS is based on the proceedings of a workshop that was an integral part of the 1992-93 IMA program on "Control Theory." The workshop featured a mathematicalintroductionto kinematics and fine motion planning; dynam- ics and control of kinematically redundant robot arms including snake-like robots, multi-fingered robotic hands; methods of non-holonomic motion planning for space robots, multifingered robot hands and mobile robots; new techniques in analytical mechanics for writing the dynamics of com- plicated multi-body systems subject to constraints on angular momentum or other non-holonomic constraints. In addition to papers representing proceedings of the Workshop, this volume contains several longer papers surveying developments of the intervening years. We thank John Baillieul, Shankar S. Sastry, and Hector J. Sussmann for organizing the workshop and editing the proceedings. We also take this opportunity to thank the National Science Foundation and the Army Research Office, whose financial support made the workshop possible. Avner Friedman Willard Miller, Jr. |
You may like...
The Great Gatsby - The Only Authorized…
F. Scott Fitzgerald
Paperback
|