Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics > General
A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research.
This book presents the Proceedings of the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, held in Palermo, Italy, from 18 to 23 May 2015. Non-Hermitian operators, and non-Hermitian Hamiltonians in particular, have recently received considerable attention from both the mathematics and physics communities. There has been a growing interest in non-Hermitian Hamiltonians in quantum physics since the discovery that PT-symmetric Hamiltonians can have a real spectrum and thus a physical relevance. The main subjects considered in this book include: PT-symmetry in quantum physics, PT-optics, Spectral singularities and spectral techniques, Indefinite-metric theories, Open quantum systems, Krein space methods, and Biorthogonal systems and applications. The book also provides a summary of recent advances in pseudo-Hermitian Hamiltonians and PT-symmetric Hamiltonians, as well as their applications in quantum physics and in the theory of open quantum systems.
In the present work, the target station of the accelerator-driven neutron source HBS is optimized in comprehensive parameter studies using the Monto-Carlo method. The dependence of the most important performance characteristics of such a system on the external parameters is investigated neglecting technical and mechanical limitations. In this way, qualitative and quantitative statements for all possible configurations and envisaged applications can be derived and should be considered in the detailed planning of such facilities. For this purpose, different scenarios are considered that place completely different requirements on the design of the target station. The central statements derived in this thesis can be transferred to any framework conditions, such as different accelerator energies, so that these results can be used in the development of other neutron sources, which together with the HBS form a European network and provide a prosperous community in neutron science.
This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required in particular for a background independent theory of quantum gravity. A sizeable proportion of current quantum gravity programs - e.g. geometrodynamical and loop quantum gravity approaches to quantum GR, quantum cosmology, supergravity and M-theory - are background independent in this sense. This book's foundational topic is thus furthermore of practical relevance in the ongoing development of quantum gravity programs. This book shows moreover that eight of the nine facets of the Problem of Time already occur upon entertaining background independence in classical (rather than quantum) physics. By this development, and interpreting shape theory as modelling background independence, this book further establishes background independence as a field of study. Background independent mechanics, as well as minisuperspace (spatially homogeneous) models of GR and perturbations thereabout are used to illustrate these points. As hitherto formulated, the different facets of the Problem of Time greatly interfere with each others' attempted resolutions. This book explains how, none the less, a local resolution of the Problem of Time can be arrived at after various reconceptualizations of the facets and reformulations of their mathematical implementation. Self-contained appendices on mathematical methods for basic and foundational quantum gravity are included. Finally, this book outlines how supergravity is refreshingly different from GR as a realization of background independence, and what background independence entails at the topological level and beyond.
This book presents a comprehensive treatise on Riemannian geometric computations and related statistical inferences in several computer vision problems. This edited volume includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the mathematical entities that necessitate a geometric analysis include rotation matrices (e.g. in modeling camera motion), stick figures (e.g. for activity recognition), subspace comparisons (e.g. in face recognition), symmetric positive-definite matrices (e.g. in diffusion tensor imaging), and function-spaces (e.g. in studying shapes of closed contours).
With this book, distinguished and notable contributors wish to honor Professor Charles S. Tapiero s scientific achievements. Although it covers only a few of the directions Professor Tapiero has taken in his work, it presents important modern developments in theory and in diverse applications, as studied by his colleagues and followers, further advancing the topics Tapiero has been investigating. The book is divided into three parts featuring original contributions covering the following areas: general modeling and analysis; applications to marketing, economy and finance; and applications to operations and manufacturing. Professor Tapiero is among the most active researchers in control theory; in the late sixties, he started to enthusiastically promote optimal control theory along with differential games, successfully applying it to diverse problems ranging from classical operations research models to finance, risk and insurance, marketing, transportation and operations management, conflict management and game theory, engineering, regional and urban sciences, environmental economics, and organizational behavior. Over the years, Professor Tapiero has produced over 300 papers and communications and 14 books, which have had a major impact on modern theoretical and applied research. Notable among his numerous pioneering scientific contributions are the use of graph theory in the behavioral sciences, the modeling of advertising as a random walk, the resolution of stochastic zero-sum differential games, the modeling of quality control as a stochastic competitive game, and the development of impulsive control methods in management. Charles Tapiero s creativity applies both in formulating original issues, modeling complex phenomena and solving complex mathematical problems."
This English version of Ruslan L. Stratonovich's Theory of Information (1975) builds on theory and provides methods, techniques, and concepts toward utilizing critical applications. Unifying theories of information, optimization, and statistical physics, the value of information theory has gained recognition in data science, machine learning, and artificial intelligence. With the emergence of a data-driven economy, progress in machine learning, artificial intelligence algorithms, and increased computational resources, the need for comprehending information is essential. This book is even more relevant today than when it was first published in 1975. It extends the classic work of R.L. Stratonovich, one of the original developers of the symmetrized version of stochastic calculus and filtering theory, to name just two topics. Each chapter begins with basic, fundamental ideas, supported by clear examples; the material then advances to great detail and depth. The reader is not required to be familiar with the more difficult and specific material. Rather, the treasure trove of examples of stochastic processes and problems makes this book accessible to a wide readership of researchers, postgraduates, and undergraduate students in mathematics, engineering, physics and computer science who are specializing in information theory, data analysis, or machine learning.
Vibration problems dealing with advanced Mathematical and Numerical Techniques have extensive application in a wide class of problems in ae- nautics, aerodynamics, space science and technology, off-shore engineering and in the design of different structural components of high speed space crafts and nuclear reactors. Different classes of vibration problems dealing with complex geometries and non-linear behaviour require careful attention of scientists and engineers in pursuit of their research activities. Almost all fields of Engineering, Science and Technology, ranging from small domestic building subjected to earthquake and cyclone to the space craft venturing towards different planets, from giant ship to human skeleton, encounter problems of vibration and dynamic loading. This being truly an interdisciplinary field, where the mathematicians, phy- cists and engineers could interface their innovative ideas and creative thoughts to arrive at an appropriate solution, Bengal Engineering and Science University, Shibpur, India, a premier institution for education and research in engineering, science and technology felt it appropriate to organize 8th International C- ference on "Vibration Problems (ICOVP-2007)" as a part of its sesquicentenary celebration. The conference created a platform and all aspects of vibration phenomenon with the focus on the state-of-the art in theoretical, experimental and applied research areas were addressed and the scientific interaction, p- ticipated by a large gathering including eminent personalities and young research workers, generated many research areas and innovative ideas.
This book presents a mathematical structure modeling a physical or biological system that can be in any of a number of states. Each state is characterized by a set of binary features, and differs from some other neighbor state or states by just one of those features. The book considers the evolution of such a system over time and analyzes such a structure from algebraic and probabilistic (stochastic) standpoints.
Without using the customary Clifford algebras frequently studied in connection with the representations of orthogonal groups, this book gives an elementary introduction to the two-component spinor formalism for four-dimensional spaces with any signature. Some of the useful applications of four-dimensional spinors, such as Yang-Mills theory, are derived in detail using illustrative examples. Spinors in Four-Dimensional Spaces is aimed at graduate students and researchers in mathematical and theoretical physics interested in the applications of the two-component spinor formalism in any four-dimensional vector space or Riemannian manifold with a definite or indefinite metric tensor. This systematic and self-contained book is suitable as a seminar text, a reference book, and a self-study guide.
This monograph forms an interdisciplinary study in atomic, molecular, and quantum information (QI) science. Here a reader will find that applications of the tools developed in QI provide new physical insights into electron optics as well as properties of atoms & molecules which, in turn, are useful in studying QI both at fundamental and applied levels. In particular, this book investigates entanglement properties of flying electronic qubits generated in some of the well known processes capable of taking place in an atom or a molecule following the absorption of a photon. Here, one can generate Coulombic or fine-structure entanglement of electronic qubits. The properties of these entanglements differ not only from each other, but also from those when spin of an inner-shell photoelectron is entangled with the polarization of the subsequent fluorescence. Spins of an outer-shell electron and of a residual photoion can have free or bound entanglement in a laboratory.
This book offers an introduction to the mathematical, probabilistic and numerical methods used in the modern theory of option pricing. The text is designed for readers with a basic mathematical background. The first part contains a presentation of the arbitrage theory in discrete time. In the second part, the theories of stochastic calculus and parabolic PDEs are developed in detail and the classical arbitrage theory is analyzed in a Markovian setting by means of of PDEs techniques. After the martingale representation theorems and the Girsanov theory have been presented, arbitrage pricing is revisited in the martingale theory optics. General tools from PDE and martingale theories are also used in the analysis of volatility modeling. The book also contains an Introduction to Levy processes and Malliavin calculus. The last part is devoted to the description of the numerical methods used in option pricing: Monte Carlo, binomial trees, finite differences and Fourier transform.
Hilbert space frames have long served as a valuable tool for signal and image processing due to their resilience to additive noise, quantization, and erasures, as well as their ability to capture valuable signal characteristics. More recently, finite frame theory has grown into an important research topic in its own right, with a myriad of applications to pure and applied mathematics, engineering, computer science, and other areas. The number of research publications, conferences, and workshops on this topic has increased dramatically over the past few years, but no survey paper or monograph has yet appeared on the subject. Edited by two of the leading experts in the field, "Finite Frames" aims to fill this void in the literature by providing a comprehensive, systematic study of finite frame theory and applications. With carefully selected contributions written by highly experienced researchers, it covers topics including: * Finite Frame Constructions; Despite the variety of its chapters' source and content, the book's notation and terminology are unified throughout and provide a definitive picture of the current state of frame theory. With a broad range of applications and a clear, full presentation, this book is a highly valuable resource for graduate students and researchers across disciplines such as applied harmonic analysis, electrical engineering, quantum computing, medicine, and more. It is designed to be used as a supplemental textbook, self-study guide, or reference book."
Multimedia services involve processing, transmission and retrieval of multiple forms of information. Multimedia services have gained momentum in the past few years due to the easy availability of computing power and storage media. Societyisdemandinghuman-likeintelligentbehaviour,suchasadaptationand generalization, from machines every day. With this view in mind, researchers are working on fusing intelligent paradigms such as arti?cial neural networks, swarm intelligence, arti?cial immune systems, evolutionary computing and multiagents with multimedia services. Arti?cial neural networks use neurons, interconnected using various schemes, for fusing learning in multimedia-based systems. Evolutionary c- puting techniques are used in tasks such as optimization. Typical multiagent systems are based on Belief-Desire-Intention model and act on behalf of the users. Typical examples of intelligent multimedia services include digital - braries, e-learning and teaching, e-government, e-commerce, e-entertainment, e-health and e-legal services. This book includes 15 chapters on advanced tools and methodologies pertaining to the multimedia services. The authors and reviewers have c- tributed immensely to this research-oriented book. We believe that this - search volume will be valuable to professors, researchers and students of all disciplines, such as computer science, engineering and management. We express our sincere thanks to Springer-Verlag for their wonderful e- torial support.
Gabrio Piola works had an enormous impact on the development of
applied mathematics and continuum mechanics. An excellent
scientific committee who took it upon themselves to translate his
complete works. In a second step, they commentedPiola s work and
compared it to modern theories in mechanics in order to stress
Piola s impact on modern science and proofs that he has set
milestones in applied mathematics.
I have found many thousands more readers than I ever looked for. I have no right to say to these, You shall not ?nd fault with my art, or fall asleep over my pages; but I ask you to believe that this person writing strives to tell the truth. If there is not that, there is nothing. William Makepeace Thackeray, The History of Pendennis This is a monograph/textbook on the probabilistic aspects of gambling, intended for those already familiar with probability at the post-calculus, p- measure-theory level. Gambling motivated much of the early development of probability the- 1 ory (David 1962). Indeed, some of the earliest works on probability include Girolamo Cardano's [1501-1576] Liber de Ludo Aleae (The Book on Games of Chance, written c. 1565, published 1663), Christiaan Huygens's [1629- 1695] "De ratiociniis in ludo aleae" ("On reckoning in games of chance," 1657), Jacob Bernoulli's [1654-1705]Ars Conjectandi (The Art of Conject- ing, written c. 1690, published 1713), Pierre R' emond de Montmort's [1678- 1719] Essay d'analyse sur les jeux de hasard (Analytical Essay on Games of Chance, 1708, 1713), and Abraham De Moivre's [1667-1754]TheDoctrineof Chances (1718, 1738, 1756). Gambling also had a major in?uence on 20- century probability theory, as it provided the motivation for the concept of a martingale.
This multi-author contributed proceedings volume contains recent advances in several areas of Computational and Applied Mathematics. Each review is written by well known leaders of Computational and Applied Mathematics. The book gives a comprehensive account of a variety of topics including - Efficient Global Methods for the Numerical Solution of Nonlinear Systems of Two point Boundary Value Problems; Advances on collocation based numerical methods for Ordinary Differential Equations and Volterra Integral Equations; Basic Methods for Computing Special Functions, Melt Spinning: Optimal Control and Stability Issues; Brief survey on the CP methods for the Schrodinger equation; Symplectic Partitioned Runge-Kutta methods for the numerical integration of periodic and oscillatory problems. "Recent Advances in Computational and Applied Mathematics" is aimed at advanced undergraduates and researchers who are working in these fast moving fields.
These lecture notes are dedicated to the most recent theoretical applications of Black Hole solutions in high-energy physics. The main motivation of this volume is to present the latest black hole backgrounds that are relevant for gauge/gravity correspondence. Leading scientists in the field explain effective techniques for finding singular and cosmological solutions embedded in gauged supergravity, shedding light on underlying properties and symmetries. Starting from a basic level, the mathematical structures underlying black holes and cosmologies are revealed, helping the reader grasp the connection between theoretical approaches and physical observations with insights into possible future developments from both a theoretical and experimental point of view. The topics covered in this volume are based on lectures delivered during the "Theoretical Frontiers in Black Holes and Cosmology" school, held in Natal in June 2015.
This contributed volume presents computational models of diabetes that quantify the dynamic interrelationships among key physiological variables implicated in the underlying physiology under a variety of metabolic and behavioral conditions. These variables comprise for example blood glucose concentration and various hormones such as insulin, glucagon, epinephrine, norepinephrine as well as cortisol. The presented models provide a powerful diagnostic tool but may also enable treatment via long-term glucose regulation in diabetics through closed-look model-reference control using frequent insulin infusions, which are administered by implanted programmable micro-pumps. This research volume aims at presenting state-of-the-art research on this subject and demonstrating the potential applications of modeling to the diagnosis and treatment of diabetes. The target audience primarily comprises research and experts in the field but the book may also be beneficial for graduate students.
This book offers an essential textbook on complex analysis. After introducing the theory of complex analysis, it places special emphasis on the importance of Poincare theorem and Hartog's theorem in the function theory of several complex variables. Further, it lays the groundwork for future study in analysis, linear algebra, numerical analysis, geometry, number theory, physics (including hydrodynamics and thermodynamics), and electrical engineering. To benefit most from the book, students should have some prior knowledge of complex numbers. However, the essential prerequisites are quite minimal, and include basic calculus with some knowledge of partial derivatives, definite integrals, and topics in advanced calculus such as Leibniz's rule for differentiating under the integral sign and to some extent analysis of infinite series. The book offers a valuable asset for undergraduate and graduate students of mathematics and engineering, as well as students with no background in topological properties.
This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.
The aim of this book is to introduce mathematicians (and, in particular, graduate students) to the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in play. This should in turn promote interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, even if the mathematical one is the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functional analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second part presents a large family of examples of classical field theories, both from experimental and theoretical physics, while the third part provides an introduction to quantum field theory, presents various renormalization methods and discusses the quantization of factorization algebras. The book is primarily intended for pure mathematicians (and in particular graduate students) who would like to learn about the mathematics of quantum field theory.
The book shows a very original organization addressing in a non traditional way, but with a systematic approach, to who has an interest in using mathematics in the social sciences. The book is divided in four parts: (a) a historical part, written by Vittorio Capecchi which helps us understand the changes in the relationship between mathematics and sociology by analyzing the mathematical models of Paul F. Lazarsfeld, the model of simulation and artificial societies, models of artificial neural network and considering all the changes in scientific paradigms considered; (b) a part coordinated by Pier Luigi Contucci on mathematical models that consider the relationship between the mathematical models that come from physics and linguistics to arrive at the study of society and those which are born within sociology and economics; (c) a part coordinated by Massimo Buscema analyzing models of artificial neural networks; (d) a part coordinated by Bruno D'Amore which considers the relationship between mathematics and art. The title of the book "Mathematics and Society" was chosen because the mathematical applications exposed in the book allow you to address two major issues: (a) the general theme of technological innovation and quality of life (among the essays are on display mathematical applications to the problems of combating pollution and crime, applications to mathematical problems of immigration, mathematical applications to the problems of medical diagnosis, etc.) (b) the general theme of technical innovation and creativity, for example the art and mathematics section which connects to the theme of creative cities. The book is very original because it is not addressed only to those who are passionate about mathematical applications in social science but also to those who, in different societies, are: (a) involved in technological innovation to improve the quality of life; (b) involved in the wider distribution of technological innovation in different areas of creativity (as in the project "Creative Cities Network" of UNESCO).
Fads are as common in mathematics as in any other human activity, and it is always difficult to separate the enduring from the ephemeral in the achievements of one's own time. An unfortunate effect of the predominance of fads is that if a student doesn't learn about such worthwhile topics as the wave equation, Gauss's hypergeometric function, the gamma function, and the basic problems of the calculus of variations-among others-as an undergraduate, then he/she is unlikely to do so later. The natural place for an informal acquaintance with such ideas is a leisurely introductory course on differential equations. Specially designed for just such a course, Differential Equations with Applications and Historical Notes takes great pleasure in the journey into the world of differential equations and their wide range of applications. The author-a highly respected educator-advocates a careful approach, using explicit explanation to ensure students fully comprehend the subject matter. With an emphasis on modeling and applications, the long-awaited Third Edition of this classic textbook presents a substantial new section on Gauss's bell curve and improves coverage of Fourier analysis, numerical methods, and linear algebra. Relating the development of mathematics to human activity-i.e., identifying why and how mathematics is used-the text includes a wealth of unique examples and exercises, as well as the author's distinctive historical notes, throughout. Provides an ideal text for a one- or two-semester introductory course on differential equations Emphasizes modeling and applications Presents a substantial new section on Gauss's bell curve Improves coverage of Fourier analysis, numerical methods, and linear algebra Relates the development of mathematics to human activity-i.e., identifying why and how mathematics is used Includes a wealth of unique examples and exercises, as well as the author's distinctive historical notes, throughout Uses explicit explanation to ensure students fully comprehend the subject matter Outstanding Academic Title of the Year, Choice magazine, American Library Association.
Classical Mechanics teaches readers how to solve physics problems; in other words, how to put math and physics together to obtain a numerical or algebraic result and then interpret these results physically. These skills are important and will be needed in more advanced science and engineering courses. However, more important than developing problem-solving skills and physical-interpretation skills, the main purpose of this multi-volume series is to survey the basic concepts of classical mechanics and to provide the reader with a solid understanding of the foundational content knowledge of classical mechanics. Classical Mechanics: The Universal Law of Gravitation focuses on the notion that forces act through their associated fields, which is first introduced when discussing Newton's universal law of gravitation. A huge conceptual leap is required from the reader: an object can cause another object to move without even touching it. This is a difficult concept to reconcile with our everyday experiences but it makes perfect sense when we realize that is exactly how the Earth acts on us. Gravity is able to pull on us even though we are not in direct contact with the Earth. Also, the concept of super-position (and when it is applicable) is introduced. Super-position is crucial to the development of problem-solving skills so it will be illustrated in a number of example problems. |
You may like...
A Commentary On Newton's Principia…
John Martin Frederick Wright
Hardcover
R1,025
Discovery Miles 10 250
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,264
Discovery Miles 32 640
Real Perspective of Fourier Transforms…
Juan Manuel Velazquez Arcos
Hardcover
Dynamic Data Assimilation - Beating the…
Dinesh G. Harkut
Hardcover
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
|