![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > General
This book is summarizing the results of the workshop "Uniform Distribution and Quasi-Monte Carlo Methods" of the RICAM Special Semester on "Applications of Algebra and Number Theory" in October 2013. The survey articles in this book focus on number theoretic point constructions, uniform distribution theory, and quasi-Monte Carlo methods. As deterministic versions of the Monte Carlo method, quasi-Monte Carlo rules enjoy increasing popularity, with many fruitful applications in mathematical practice, as for example in finance, computer graphics, and biology. The goal of this book is to give an overview of recent developments in uniform distribution theory, quasi-Monte Carlo methods, and their applications, presented by leading experts in these vivid fields of research.
The book "Computational Error and Complexity in Science and
Engineering" pervades all the science and engineering disciplines
where computation occurs. Scientific and engineering computation
happens to be the interface between the mathematical model/problem
and the real world application. One needs to obtain good quality
numerical values for any real-world implementation. Just
mathematical quantities symbols are of no use to
engineers/technologists. Computational complexity of the numerical
method to solve the mathematical model, also computed along with
the solution, on the other hand, will tell us how much
computation/computational effort has been spent to achieve that
quality of result. Anyone who wants the specified physical problem
to be solved has every right to know the quality of the solution as
well as the resources spent for the solution. The computed error as
well as the complexity provide the scientific convincing answer to
these questions.
This book addresses the peculiarities of nonlinear wave propagation in waveguides and explains how the stratification depends on the waveguide and confinement. An example of this is an optical fibre that does not allow light to pass through a density jump. The book also discusses propagation in the nonlinear regime, which is characterized by a specific waveform and amplitude, to demonstrate so-called solitonic behaviour. In this case, a wave may be strongly localized, and propagates with a weak change in shape. In the waveguide case there are additional contributions of dispersion originating from boundary or asymptotic conditions. Offering concrete guidance on solving application problems, this essentially (more than twice) expanded second edition includes various aspects of guided propagation of nonlinear waves as well as new topics like solitonic behaviour of one-mode and multi-mode excitation and propagation and plasma waveguides, propagation peculiarities of electromagnetic waves in metamaterials, new types of dispersion, dissipation, electromagnetic waveguides, planetary waves and plasma waves interaction.The key feature of the solitonic behaviour is based on Coupled KdV and Coupled NS systems. The systems are derived in this book and solved numerically with the proof of stability and convergence. The domain wall dynamics of ferromagnetic microwaveguides and Bloch waves in nano-waveguides are also included with some problems of magnetic momentum and charge transport.
The series of texts composing this book is based on the lectures presented during the II Jose Plinio Baptista School of Cosmology, held in Pedra Azul (Espirito Santo, Brazil) between 9 and 14 March 2014. This II JBPCosmo has been entirely devoted to the problem of understanding theoretical and observational aspects of Cosmic Background Radiation (CMB).The CMB is one of the most important phenomena in Physics and a fundamental probe of our Universe when it was only 400,000 years old. It is an extraordinary laboratory where we can learn from particle physics to cosmology; its discovery in 1965 has been a landmark event in the history of physics.The observations of the anisotropy of the cosmic microwave background radiation through the satellites COBE, WMAP and Planck provided a huge amount of data which are being analyzed in order to discover important informations regarding the composition of our universe and the process of structure formation.
This book presents a cross-disciplinary approach to smart grids, offering an invaluable basis for understanding their complexity and potential, and for discussing their technical, legal, economic, societal, psychological and security aspects. Smart grids are a complex phenomenon involving new, active roles for consumers and prosumers, novel social, political and cultural practices, advanced ICT, new markets, security of supply issues, the informational turn in energy, valuation of assets and investments, technological innovation and (de)regulation. Furthermore, smart grids offer new interfaces, in turn creating hybrid fields: with the increasing use of electric vehicles and electric transportation, smart grids represent the crossroads of energy and mobility. While the aim is to achieve more sustainable production, transportation and use of energy, the importance of smart grids actually has less to do with electricity, heat or gas, and far more with transforming the infrastructure needed to deliver energy, as well as the roles of its owners, operators and users. The immediate goal is to contribute positively to a sustainable world society. The chapters are revised and expanded texts based upon lectures delivered at the Groningen Energy Summer School 2014. Questions for further discussion at the end of each chapter highlight the key themes that emerge. The book offers an indispensable resource for researchers, professionals and companies in the power supply industry, and for students seeking to broaden and deepen their understanding of smart grids.
Algebra and number theory have always been counted among the most beautiful and fundamental mathematical areas with deep proofs and elegant results. However, for a long time they were not considered of any substantial importance for real-life applications. This has dramatically changed with the appearance of new topics such as modern cryptography, coding theory, and wireless communication. Nowadays we find applications of algebra and number theory frequently in our daily life. We mention security and error detection for internet banking, check digit systems and the bar code, GPS and radar systems, pricing options at a stock market, and noise suppression on mobile phones as most common examples. This book collects the results of the workshops "Applications of algebraic curves" and "Applications of finite fields" of the RICAM Special Semester 2013. These workshops brought together the most prominent researchers in the area of finite fields and their applications around the world. They address old and new problems on curves and other aspects of finite fields, with emphasis on their diverse applications to many areas of pure and applied mathematics.
During the past three decades, the development of nonlinear analysis, dynamical systems and their applications to science and engineering has stimulated renewed enthusiasm for the theory of Ordinary Differential Equations (ODE).This useful book, which is based on the lecture notes of a well-received graduate course, emphasizes both theory and applications, taking numerous examples from physics and biology to illustrate the application of ODE theory and techniques.Written in a straightforward and easily accessible style, this volume presents dynamical systems in the spirit of nonlinear analysis to readers at a graduate level and serves both as a textbook and as a valuable resource for researchers.This new edition contains corrections and suggestions from the various readers and users. A new chapter on Monotone Dynamical Systems is added to take into account the new developments in ordinary differential equations and dynamical systems.
This volume provides academic discussion on the theory and practice of mathematical analysis of nonlinear and inverse problems in electromagnetics and their applications. From mathematical problem statement to numerical results, the featured articles provide a concise overview of comprehensive approaches to the solution of problems. Articles highlight the most recent research concerning reliable theoretical approaches and numerical techniques and cover a wide range of applications, including acoustics, electromagnetics, optics, medical imaging, and geophysics. The nonlinear and ill-posed nature of inverse problems and the challenges they present when developing new numerical methods are explained, and numerical verification of proposed new methods on simulated and experimental data is provided. Based on the special session of the same name at the 2017 Progress in Electromagnetics Research Symposium, this book offers a platform for interaction between theoretical and practical researchers and between senior and incoming members in the field.
This book is a collection of articles written in memory of Boris Dubrovin (1950-2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: ``Integrable Systems'' and ``Quantum Theories and Algebraic Geometry'', reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
Broadly organized around the applications of Fourier analysis, "Methods of Applied Mathematics with a MATLAB Overview" covers both classical applications in partial differential equations and boundary value problems, as well as the concepts and methods associated to the Laplace, Fourier, and discrete transforms. Transform inversion problems are also examined, along with the necessary background in complex variables. A final chapter treats wavelets, short-time Fourier analysis, and geometrically-based transforms. The computer program MATLAB is emphasized throughout, and an introduction to MATLAB is provided in an appendix. Rich in examples, illustrations, and exercises of varying difficulty, this text can be used for a one- or two-semester course and is ideal for students in pure and applied mathematics, physics, and engineering.
This monograph provides a concise presentation of a mathematical approach to metastability, a wide-spread phenomenon in the dynamics of non-linear systems - physical, chemical, biological or economic - subject to the action of temporal random forces typically referred to as noise, based on potential theory of reversible Markov processes. The authors shed new light on the metastability phenomenon as a sequence of visits of the path of the process to different metastable sets, and focuses on the precise analysis of the respective hitting probabilities and hitting times of these sets. The theory is illustrated with many examples, ranging from finite-state Markov chains, finite-dimensional diffusions and stochastic partial differential equations, via mean-field dynamics with and without disorder, to stochastic spin-flip and particle-hop dynamics and probabilistic cellular automata, unveiling the common universal features of these systems with respect to their metastable behaviour. The monograph will serve both as comprehensive introduction and as reference for graduate students and researchers interested in metastability.
This work is dedicated to Wassiliy Leontief's concepts of Input-Output Analysis and to the algebraic properties of Piero Sraffa's seminal models described consequently by matrix algebra and the Perron-Frobenius Theorem. Detailed examples and visualizing graphs are presented for applications of various mathematical methods.
This edited volume offers a clear in-depth overview of research covering a variety of issues in social search and recommendation systems. Within the broader context of social network analysis it focuses on important and up-coming topics such as real-time event data collection, frequent-sharing pattern mining, improvement of computer-mediated communication, social tagging information, search system personalization, new detection mechanisms for the identification of online user groups, and many more. The twelve contributed chapters are extended versions of conference papers as well as completely new invited chapters in the field of social search and recommendation systems. This first-of-its kind survey of current methods will be of interest to researchers from both academia and industry working in the field of social networks.
Newton's classical physics and its underlying ontology are loaded with several metaphysical hypotheses that cannot be justified by rational reasoning nor by experimental evidence. Furthermore, it is well known that some of these hypotheses are not contained in the great theories of Modern Physics, such as the theory of Special Relativity and Quantum Mechanics. This book shows that, on the basis of Newton's classical physics and by rational reconstruction, the theory of Special Relativity as well as Quantum Mechanics can be obtained by partly eliminating or attenuating the metaphysical hypotheses. Moreover, it is shown that these reconstructions do not require additional hypotheses or new experimental results. In the second edition the rational reconstructions are completed with respect to General Relativity and Cosmology. In addition, the statistics of quantum objects is elaborated in more detail with respect to the rational reconstruction of quantum mechanics. The new material completes the approach of the book as much as it is possible at the present state of knowledge. Presumably, the most important contribution that is added to the second edition refers to the problem of interpretation of the three great theories of Modern Physics. It is shown in detail that in the light of rational reconstructions even realistic interpretations of the three theories of Modern Physics are possible and can easily be achieved.
This thesis presents fundamental work that explains two mysteries concerning the trajectory of interplanetary spacecraft. For the first problem, the so-called Pioneer anomaly, a wholly new and innovative method was developed for computing all contributions to the acceleration due to onboard thermal sources. Through a careful analysis of all parts of the spacecraft Pioneer 10 and 11, the application of this methodology has yielded the observed anomalous acceleration. This marks a major achievement, given that this problem remained unsolved for more than a decade. For the second anomaly, the flyby anomaly, a tiny glitch in the velocity of spacecraft that perform gravity assisting maneuvers on Earth, no definitive answer is put forward; however a quite promising strategy for examining the problem is provided and a new mission is proposed. The proposal largely consists in using the Galileo Navigational Satellite System to track approaching spacecraft, and in considering a small test body that approaches Earth from a highly elliptic trajectory.
Der Grundkurs Theoretische Physik deckt in 7 Banden alle fur das Diplom und fur Bachelor/Master-Studiengange massgeblichen Gebiete ab. Jeder Band vermittelt das im jeweiligen Semester notwendige theoretisch-physikalische Rustzeug. UEbungsaufgaben mit ausfuhrlichen Loesungen dienen der Vertiefung des Stoffs. Der 4. Band behandelt die Gebiete Thermodynamik und Relativitatstheorie. Fur die Neuauflage wurde er grundlegend uberarbeitet und um 24 Aufgaben erganzt. Durch die zweifarbige Gestaltung ist der Stoff jetzt noch ubersichtlicher gegliedert.
This book describes an effective framework for setting the right process parameters and new mold design to reduce the current plastic defects in injection molding. It presents a new approach for the optimization of injection molding process via (i) a new mold runner design which leads to 20 percent reduction in scrap rate, 2.5 percent reduction in manufacturing time, and easier ejection of injected part, (ii) a new mold gate design which leads to less plastic defects; and (iii) the introduction of a number of promising alternatives with high moldability indices. Besides presenting important developments of relevance academic research, the book also includes useful information for people working in the injection molding industry, especially in the green manufacturing field.
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.
The main concern of the book is analysis of biological processes, the final stage of which is mathematical modeling, i.e. quantitative presentation of the processes in rigorous mathematical terms. It is designated for non-mathematicians. Mathematical models can be compared with experimental data thus verifying the validity of the models and finally of the initial assumptions and verbal descriptions of the processes. The models (usually in the form of mathematical equations) are achieved painlessly via the schemes summarising verbal description of what is known concerning the processes. To solve the equations computer software is used. The step-by-step analysis leads to quite sophisticated models some of them being original. The book helps the reader to develop more general approach to the problems. It may be useful for experienced readers as well.
"Mathematical Concepts and Methods in Modern Biology" offers a quantitative framework for analyzing, predicting, and modulating the behavior of complex biological systems. The book presents important mathematical concepts, methods and tools in the context of essential questions raised in modern biology. Designed around the principles of project-based learning and
problem-solving, the book considers biological topics such as
neuronal networks, plant population growth, metabolic pathways, and
phylogenetic tree reconstruction. The mathematical modeling tools
brought to bear on these topics include Boolean and ordinary
differential equations, projection matrices, agent-based modeling
and several algebraic approaches. Heavy computation in some of the
examples is eased by the use of freely available open-source
software.
This book presents a careful selection of the contributions presented at the Mathematical Methods in Engineering (MME10) International Symposium, held at the Polytechnic Institute of Coimbra- Engineering Institute of Coimbra (IPC/ISEC), Portugal, October 21-24, 2010. The volume discusses recent developments about theoretical and applied mathematics toward the solution of engineering problems, thus covering a wide range of topics, such as: Automatic Control, Autonomous Systems, Computer Science, Dynamical Systems and Control, Electronics, Finance and Economics, Fluid Mechanics and Heat Transfer, Fractional Mathematics, Fractional Transforms and Their Applications, Fuzzy Sets and Systems, Image and Signal Analysis, Image Processing, Mechanics, Mechatronics, Motor Control and Human Movement Analysis, Nonlinear Dynamics, Partial Differential Equations, Robotics, Acoustics, Vibration and Control, and Wavelets.
This volume developed from a Workshop on Natural Locomotion in Fluids and on Surfaces: Swimming, Flying, and Sliding which was held at the Institute for Mathematics and its Applications (IMA) at the University of Minnesota, from June 1-5, 2010. The subject matter ranged widely from observational data to theoretical mechanics, and reflected the broad scope of the workshop. In both the prepared presentations and in the informal discussions, the workshop engaged exchanges across disciplines and invited a lively interaction between modelers and observers. The articles in this volume were invited and fully refereed. They provide a representative if necessarily incomplete account of the field of natural locomotion during a period of rapid growth and expansion. The papers presented at the workshop, and the contributions to the present volume, can be roughly divided into those pertaining to swimming on the scale of marine organisms, swimming of microorganisms at low Reynolds numbers, animal flight, and sliding and other related examples of locomotion.
The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any "a priori" assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional displacements, once properly scaled, converge in "H"1 towards a limit that satisfies the well-known two-dimensional equations of the linear Kirchhoff-Love theory; the convergence of stress is also established. In the nonlinear case, again after "ad hoc" scalings have been performed, it is shown that the leading term of a formal asymptotic expansion of the three-dimensional solution satisfies well-known two-dimensional equations, such as those of the nonlinear Kirchhoff-Love theory, or the von Karman equations. Special attention is also given to the first convergence result obtained in this case, which leads to two-dimensional large deformation, frame-indifferent, nonlinear membrane theories. It is also demonstrated that asymptotic methods can likewise be used for justifying other lower-dimensional equations of elastic shallow shells, and the coupled pluri-dimensional equations of elastic multi-structures, i.e., structures with junctions. In each case, the existence, uniqueness or multiplicity, and regularity of solutions to the limit equations obtained in this fashion are also studied.
This monograph covers the concept of cartesian tensors with the needs and interests of physicists, chemists and other physical scientists in mind. After introducing elementary tensor operations and rotations, spherical tensors, combinations of tensors are introduced, also covering Clebsch-Gordan coefficients. After this, readers from the physical sciences will find generalizations of the results to spinors and applications to quantum mechanics. |
You may like...
Complex Systems - Relationships between…
Georgi M. Dimirovski
Hardcover
R4,216
Discovery Miles 42 160
WirelessHART (TM) - Real-Time Mesh…
Deji Chen, Mark Nixon, …
Hardcover
R2,810
Discovery Miles 28 100
Handbook of Large-Scale Distributed…
Samee U. Khan, Albert Y. Zomaya, …
Hardcover
R5,945
Discovery Miles 59 450
Practical Industrial Data Networks…
Steve Mackay, Edwin Wright, …
Paperback
R1,452
Discovery Miles 14 520
Design and Implementation of Practical…
Akshay Kumar, Ahmed Abdelhadi, …
Hardcover
R2,663
Discovery Miles 26 630
Management of Cyber Physical Objects in…
Antonio Guerrieri, Valeria Loscri, …
Hardcover
Safety Message Broadcast in Vehicular…
Yuanguo Bi, Haibo Zhou, …
Hardcover
R2,653
Discovery Miles 26 530
|