Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Applied mathematics > General
This book provides a detailed study of nonlinear partial differential equations satisfying certain nonstandard growth conditions which simultaneously extend polynomial, inhomogeneous and fully anisotropic growth. The common property of the many different kinds of equations considered is that the growth conditions of the highest order operators lead to a formulation of the equations in Musielak-Orlicz spaces. This high level of generality, understood as full anisotropy and inhomogeneity, requires new proof concepts and a generalization of the formalism, calling for an extended functional analytic framework. This theory is established in the first part of the book, which serves as an introduction to the subject, but is also an important ingredient of the whole story. The second part uses these theoretical tools for various types of PDEs, including abstract and parabolic equations but also PDEs arising from fluid and solid mechanics. For connoisseurs, there is a short chapter on homogenization of elliptic PDEs. The book will be of interest to researchers working in PDEs and in functional analysis.
This book presents a modern view of anomalies in quantum field theories. It is divided into six parts. The first part is preparatory covering an introduction to fermions, a description of the classical symmetries, and a short introduction to conformal symmetry. The second part of the book is devoted to the relation between anomalies and cohomology. The third part deals with perturbative methods to compute gauge, diffeomorphism and trace anomalies. In the fourth part the same anomalies are calculated with non-perturbative heat-kernel-like methods. Part five is devoted to the family's index theorem and its application to chiral anomalies, and to the differential characters and their applications to global anomalies. Part six is devoted to special topics including a complete calculation of trace and diffeomorphism anomalies of a Dirac fermion in a MAT background in two dimensions, Wess-Zumino terms in field theories, sigma models, their local and global anomalies and their cancelation, and finally the analysis of the worldsheet, sigma model, and target space anomalies of string and superstring theories. The book is targeted to researchers and graduate students.
This book brings together papers presented at the International Conference on Artificial Intelligence in China (ChinaAI) 2019, which provided a venue for disseminating the latest advances and discussing the interactions and links between the various subfields of AI. Addressing topics that cover virtually all aspects of AI and the latest developments in China, the book is chiefly intended for undergraduate and graduate students in Electrical Engineering, Computer Science, and Mathematics, for researchers and engineers from academia and industry, and for government employees (e.g. at the NSF, DOD, and DOE).
The maturity of BEM over the last few decades has resulted in a substantial number of industrial applications of the method; this demonstrates its accuracy, robustness and ease of use. The range of applications still needs to be widened, taking into account the potentialities of the Mesh Reduction techniques in general. Theoretical developments and new formulations have been reported over the last few decades, helping to expand the range of boundary elements and other mesh reduction methods (BEM/MRM) applications as well as the type of modelled materials in response to the requirements of contemporary industrial and professional environments. As design, analysis and manufacture become more integrated, the chances are that software users will be less aware of the capabilities of the analytical techniques that are at the core of the process. This reinforces the need to retain expertise in certain specialised areas of numerical methods, such as BEM/MRM, to ensure that all new tools perform satisfactorily within the aforementioned integrated process. The papers included were presented at the 44th International Conference on Boundary Elements and other Mesh Reduction Methods and report advances in techniques that reduce or eliminate the type of meshes associated with finite elements or finite differences.
The aim of this book is to present recent results in both theoretical and applied knot theory-which are at the same time stimulating for leading researchers in the field as well as accessible to non-experts. The book comprises recent research results while covering a wide range of different sub-disciplines, such as the young field of geometric knot theory, combinatorial knot theory, as well as applications in microbiology and theoretical physics.
Quantum Mechanics of Non-Hamiltonian and Dissipative Systems is
self-contained and can be used by students without a previous
course in modern mathematics and physics. The book describes the
modern structure of the theory, and covers the fundamental results
of last 15 years. The book has been recommended by Russian Ministry
of Education as the textbook for graduate students and has been
used for graduate student lectures from 1998 to 2006.
This PhD thesis is dedicated to a subfield of elementary particle physics called "Flavour Physics". The Standard Model of Particle Physics (SM) has been confirmed by thousands of experimental measurements with a high precision. But the SM leaves important questions open, like what is the nature of dark matter or what is the origin of the matter-antimatter asymmetry in the Universe. By comparing high precision Standard Model calculations with extremely precise measurements, one can find the first glimpses of the physics beyond the SM - currently we see the first hints of a potential breakdown of the SM in flavour observables. This can then be compared with purely theoretical considerations about new physics models, known as model building. Both precision calculations and model building are extremely specialised fields and this outstanding thesis contributes significantly to both topics within the field of Flavour Physics and sheds new light on the observed anomalies.
This thesis presents a revolutionary technique for modelling the dynamics of a quantum system that is strongly coupled to its immediate environment. This is a challenging but timely problem. In particular it is relevant for modelling decoherence in devices such as quantum information processors, and how quantum information moves between spatially separated parts of a quantum system. The key feature of this work is a novel way to represent the dynamics of general open quantum systems as tensor networks, a result which has connections with the Feynman operator calculus and process tensor approaches to quantum mechanics. The tensor network methodology developed here has proven to be extremely powerful: For many situations it may be the most efficient way of calculating open quantum dynamics. This work is abounds with new ideas and invention, and is likely to have a very significant impact on future generations of physicists.
This book presents a collection of essays that explore the life and works of Tatjana Afanassjewa (1876-1964), a Russian-Dutch physicist-mathematician. Readers will discover a scientist whose work on the foundations of thermodynamics significantly influenced the field itself as well as the philosophy of physics. This book highlights the philosophical consequences of her work in physics and mathematics and discusses historical aspects of her writings on the foundations of physics. In addition, it features English translations and critical reviews of key selections from her texts. First and foremost, the book highlights the numerous contributions that Afanassjewa made to the field. In particular, the authors examine her work on the foundations of thermodynamics and statistical physics, starting in the 1920s and extending to 1956, well after the untimely death of her husband in 1933. They also explore her almost entirely forgotten work on the didactics of mathematics. In addition, they discuss her influential collaboration with her husband, the Austrian physicist Paul Ehrenfest (1880-1933). The portrait that emerges is that of a highly original physicist and mathematician, whose legacy continues to influence scientists and philosophers today and whose lesser-known works deserve more attention than they have received. Readers will find a rich body of work that continues to this day to yield insights into the foundations of physics and mathematics.
This book highlights the synthesis of polarization selection system in the background of passive noise formed by reflections from space-distributed targets. This synthesis is fulfilled as close as possible to its ideal configuration in terms of maximal signal-to-noise ratio for the matched load of radar station antenna system. It presents a new approach to radar system resolution enhancement based on the development of mathematical model for radiometric receivers with mono-pulse antenna systems, as well as creation of a new algorithm that allows increasing angular resolution during the object's search and tracking due to special signal processing.
This book is a unique blend of difference equations theory and its exciting applications to economics. It deals with not only theory of linear (and linearized) difference equations, but also nonlinear dynamical systems which have been widely applied to economic analysis in recent years. It studies most important concepts and theorems in difference equations theory in a way that can be understood by anyone who has basic knowledge of calculus and linear algebra. It contains well-known applications and many recent developments in different fields of economics. The book also simulates many models to illustrate paths of economic dynamics.
.A unique book concentrated on theory of discrete dynamical
systems and its traditional as well as advanced applications to
economics. .A unique book concentrated on theory of discrete dynamical
systems and its traditional as well as advanced applications to
economics.
This book presents the results of a European-Chinese collaborative research project, Manipulation of Reynolds Stress for Separation Control and Drag Reduction (MARS), including an analysis and discussion of the effects of a number of active flow control devices on the discrete dynamic components of the turbulent shear layers and Reynolds stress. From an application point of view, it provides a positive and necessary step to control individual structures that are larger in scale and lower in frequency compared to the richness of the temporal and spatial scales in turbulent separated flows.
This book focuses on a large class of multi-valued variational differential inequalities and inclusions of stationary and evolutionary types with constraints reflected by subdifferentials of convex functionals. Its main goal is to provide a systematic, unified, and relatively self-contained exposition of existence, comparison and enclosure principles, together with other qualitative properties of multi-valued variational inequalities and inclusions. The problems under consideration are studied in different function spaces such as Sobolev spaces, Orlicz-Sobolev spaces, Sobolev spaces with variable exponents, and Beppo-Levi spaces. A general and comprehensive sub-supersolution method (lattice method) is developed for both stationary and evolutionary multi-valued variational inequalities, which preserves the characteristic features of the commonly known sub-supersolution method for single-valued, quasilinear elliptic and parabolic problems. This method provides a powerful tool for studying existence and enclosure properties of solutions when the coercivity of the problems under consideration fails. It can also be used to investigate qualitative properties such as the multiplicity and location of solutions or the existence of extremal solutions. This is the first in-depth treatise on the sub-supersolution (lattice) method for multi-valued variational inequalities without any variational structures, together with related topics. The choice of the included materials and their organization in the book also makes it useful and accessible to a large audience consisting of graduate students and researchers in various areas of Mathematical Analysis and Theoretical Physics.
This book describes the advanced stability theories for magnetically confined fusion plasmas, especially in tokamaks. As the fusion plasma sciences advance, the gap between the textbooks and cutting-edge researches gradually develops.
This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students, and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the Eighth International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2019), which took place in Lisbon, Portugal, on December 10-12, 2019. The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, and network dynamics; diffusion, epidemics, and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks; and technological networks.
What are the physical mechanisms that underlie the efficient generation and transfer of energy at the nanoscale? Nature seems to know the answer to this question, having optimised the process of photosynthesis in plants over millions of years of evolution. It is conceivable that humans could mimic this process using synthetic materials, and organic semiconductors have attracted a lot of attention in this respect. Once an organic semiconductor absorbs light, bound pairs of electrons with positively charged holes, termed `excitons', are formed. Excitons behave as fundamental energy carriers, hence understanding the physics behind their efficient generation and transfer is critical to realising the potential of organic semiconductors for light-harvesting and other applications, such as LEDs and transistors. However, this problem is extremely challenging since excitons can interact very strongly with photons. Moreover, simultaneously with the exciton motion, organic molecules can vibrate in hundreds of possible ways, having a very strong effect on energy transfer. The description of these complex phenomena is often beyond the reach of standard quantum mechanical methods which rely on the assumption of weak interactions between excitons, photons and vibrations. In this thesis, Antonios Alvertis addresses this problem through the development and application of a variety of different theoretical methods to the description of these strong interactions, providing pedagogical explanations of the underlying physics. A comprehensive introduction to organic semiconductors is followed by a review of the background theory that is employed to approach the relevant research questions, and the theoretical results are presented in close connection with experiment, yielding valuable insights for experimentalists and theoreticians alike.
This book delivers stimulating input for a broad range of researchers, from geographers and ecologists to psychologists interested in spatial perception and physicists researching in complex systems. How can one decide whether one surface or spatial object is more complex than another? What does it require to measure the spatial complexity of small maps, and why does this matter for nature, science and technology? Drawing from algorithmics, geometry, topology, probability and informatics, and with examples from everyday life, the reader is invited to cross the borders into the bewildering realm of spatial complexity, as it emerges from the study of geographic maps, landscapes, surfaces, knots, 3D and 4D objects. The mathematical and cartographic experiments described in this book lead to hypotheses and enigmas with ramifications in aesthetics and epistemology.
In two volumes, this book presents a detailed, systematic treatment of electromagnetics with application to the propagation of transient electromagnetic fields (including ultrawideband signals and ultrashort pulses) in dispersive attenuative media. The development in this expanded, updated, and reorganized new edition is mathematically rigorous, progressing from classical theory to the asymptotic description of pulsed wave fields in Debye and Lorentz model dielectrics, Drude model conductors, and composite model semiconductors. It will be of use to researchers as a resource on electromagnetic radiation and wave propagation theory with applications to ground and foliage penetrating radar, medical imaging, communications, and safety issues associated with ultrawideband pulsed fields. With meaningful exercises, and an authoritative selection of topics, it can also be used as a textbook to prepare graduate students for research. Volume 2 presents a detailed asymptotic description of plane wave pulse propagation in dielectric, conducting, and semiconducting materials as described by the classical Lorentz model of dielectric resonance, the Rocard-Powles-Debye model of orientational polarization, and the Drude model of metals. The rigorous description of the signal velocity of a pulse in a dispersive material is presented in connection with the question of superluminal pulse propagation. The second edition contains new material on the effects of spatial dispersion on precursor formation, and pulse transmission into a dispersive half space and into multilayered media. Volume 1 covers spectral representations in temporally dispersive media.
The Boussinesq equation is the first model of surface waves in shallow water that considers the nonlinearity and the dispersion and their interaction as a reason for wave stability known as the Boussinesq paradigm. This balance bears solitary waves that behave like quasi-particles. At present, there are some Boussinesq-like equations. The prevalent part of the known analytical and numerical solutions, however, relates to the 1d case while for multidimensional cases, almost nothing is known so far. An exclusion is the solutions of the Kadomtsev-Petviashvili equation. The difficulties originate from the lack of known analytic initial conditions and the nonintegrability in the multidimensional case. Another problem is which kind of nonlinearity will keep the temporal stability of localized solutions. The system of coupled nonlinear Schroedinger equations known as well as the vector Schroedinger equation is a soliton supporting dynamical system. It is considered as a model of light propagation in Kerr isotropic media. Along with that, the phenomenology of the equation opens a prospect of investigating the quasi-particle behavior of the interacting solitons. The initial polarization of the vector Schroedinger equation and its evolution evolves from the vector nature of the model. The existence of exact (analytical) solutions usually is rendered to simpler models, while for the vector Schroedinger equation such solutions are not known. This determines the role of the numerical schemes and approaches. The vector Schroedinger equation is a spring-board for combining the reduced integrability and conservation laws in a discrete level. The experimental observation and measurement of ultrashort pulses in waveguides is a hard job and this is the reason and stimulus to create mathematical models for computer simulations, as well as reliable algorithms for treating the governing equations. Along with the nonintegrability, one more problem appears here - the multidimensionality and necessity to split and linearize the operators in the appropriate way.
This book revisits many of the problems encountered in introductory quantum mechanics, focusing on computer implementations for finding and visualizing analytical and numerical solutions. It subsequently uses these implementations as building blocks to solve more complex problems, such as coherent laser-driven dynamics in the Rubidium hyperfine structure or the Rashba interaction of an electron moving in 2D. The simulations are highlighted using the programming language Mathematica. No prior knowledge of Mathematica is needed; alternatives, such as Matlab, Python, or Maple, can also be used.
|
You may like...
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
|