![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > General
This PhD thesis is dedicated to a subfield of elementary particle physics called "Flavour Physics". The Standard Model of Particle Physics (SM) has been confirmed by thousands of experimental measurements with a high precision. But the SM leaves important questions open, like what is the nature of dark matter or what is the origin of the matter-antimatter asymmetry in the Universe. By comparing high precision Standard Model calculations with extremely precise measurements, one can find the first glimpses of the physics beyond the SM - currently we see the first hints of a potential breakdown of the SM in flavour observables. This can then be compared with purely theoretical considerations about new physics models, known as model building. Both precision calculations and model building are extremely specialised fields and this outstanding thesis contributes significantly to both topics within the field of Flavour Physics and sheds new light on the observed anomalies.
Lab Math: A Handbook of Measurements, Calculations, and Other Quantitative Skills for Use at the Bench, 2nd edition, collects in one place the numbers and equations you rely on for your experiments and use to report your data-what they mean and how to use them-as well as easy-to-follow shortcuts for making the math easier. Written in an accessible and informal style, Lab Math describes basic mathematical principles and various tasks involving numbers, including how to calibrate lab equipment, how to make solutions, and the numbers involved in various methods for quantifying DNA, RNA, and proteins, and an all-new section on quantitative polymerase chain reaction. Basic statistical ideas and methods and the proper reporting of uncertainty are described in simple-to-understand language. Also included are reference tables, charts and "plug-and-chug" equation blanks for specific experimental procedures. Since the publication of the first edition in 2003, Lab Math has become an essential math reference and teaching resource for both on-the-spot practical information and background for understanding numerical tasks. Important additions in this second edition make Lab Math an even more useful tool for every laboratory.
This is the first English translation of Launhardt's Mathematische Begrundung der Volkswirtschaftslehre (1885), a major contribution to neoclassical economic theory which contains many important and original analyses. This edition will provide the basis for a re-evaluation of Launhardt's outstanding, but undervalued, contribution to economics. Taking the neoclassical emphasis on exchange as the central economic problem, Laundardt begins with a thorough treatment of the pure exchange model, then goes on to extend the treatment to the production of goods and the supply of labour, with a sophisticated general equilibrium perspective. It contains important analyses of savings and the role of capital goods, as well as an outstanding study of transport and the location of industry. Launhardt's book can, with justice, with be described as the first comprehensive treatise on welfare economics. Mathematical Principles of Economics will prove stimulating reading for economic theorists as well as those interested in the history of economics thought.
This book is devoted to an important branch of the dynamical systems theory: the study of the fine (fractal) structure of Poincare recurrences -instants of time when the system almost repeats its initial state. The authors were able to write an entirely self-contained text including many insights and examples, as well as providing complete details of proofs. The only prerequisites are a basic knowledge of analysis and topology. Thus this book can serve as a graduate text or self-study guide for courses in applied mathematics or nonlinear dynamics (in the natural sciences). Moreover, the book can be used by specialists in applied nonlinear dynamics following the way in the book. The authors applied the mathematical theory developed in the book to two important problems: distribution of Poincare recurrences for nonpurely chaotic Hamiltonian systems and indication of synchronization regimes in coupled chaotic individual systems.
This book describes the advanced stability theories for magnetically confined fusion plasmas, especially in tokamaks. As the fusion plasma sciences advance, the gap between the textbooks and cutting-edge researches gradually develops.
This updated revision gives a complete and topical overview on Nonconservative Stability which is essential for many areas of science and technology ranging from particles trapping in optical tweezers and dynamics of subcellular structures to dissipative and radiative instabilities in fluid mechanics, astrophysics and celestial mechanics. The author presents relevant mathematical concepts as well as rigorous stability results and numerous classical and contemporary examples from non-conservative mechanics and non-Hermitian physics. New coverage of ponderomotive magnetism, experimental detection of Ziegler's destabilization phenomenon and theory of double-diffusive instabilities in magnetohydrodynamics.
In two volumes, this book presents a detailed, systematic treatment of electromagnetics with application to the propagation of transient electromagnetic fields (including ultrawideband signals and ultrashort pulses) in dispersive attenuative media. The development in this expanded, updated, and reorganized new edition is mathematically rigorous, progressing from classical theory to the asymptotic description of pulsed wave fields in Debye and Lorentz model dielectrics, Drude model conductors, and composite model semiconductors. It will be of use to researchers as a resource on electromagnetic radiation and wave propagation theory with applications to ground and foliage penetrating radar, medical imaging, communications, and safety issues associated with ultrawideband pulsed fields. With meaningful exercises, and an authoritative selection of topics, it can also be used as a textbook to prepare graduate students for research. Volume 2 presents a detailed asymptotic description of plane wave pulse propagation in dielectric, conducting, and semiconducting materials as described by the classical Lorentz model of dielectric resonance, the Rocard-Powles-Debye model of orientational polarization, and the Drude model of metals. The rigorous description of the signal velocity of a pulse in a dispersive material is presented in connection with the question of superluminal pulse propagation. The second edition contains new material on the effects of spatial dispersion on precursor formation, and pulse transmission into a dispersive half space and into multilayered media. Volume 1 covers spectral representations in temporally dispersive media.
The Boussinesq equation is the first model of surface waves in shallow water that considers the nonlinearity and the dispersion and their interaction as a reason for wave stability known as the Boussinesq paradigm. This balance bears solitary waves that behave like quasi-particles. At present, there are some Boussinesq-like equations. The prevalent part of the known analytical and numerical solutions, however, relates to the 1d case while for multidimensional cases, almost nothing is known so far. An exclusion is the solutions of the Kadomtsev-Petviashvili equation. The difficulties originate from the lack of known analytic initial conditions and the nonintegrability in the multidimensional case. Another problem is which kind of nonlinearity will keep the temporal stability of localized solutions. The system of coupled nonlinear Schroedinger equations known as well as the vector Schroedinger equation is a soliton supporting dynamical system. It is considered as a model of light propagation in Kerr isotropic media. Along with that, the phenomenology of the equation opens a prospect of investigating the quasi-particle behavior of the interacting solitons. The initial polarization of the vector Schroedinger equation and its evolution evolves from the vector nature of the model. The existence of exact (analytical) solutions usually is rendered to simpler models, while for the vector Schroedinger equation such solutions are not known. This determines the role of the numerical schemes and approaches. The vector Schroedinger equation is a spring-board for combining the reduced integrability and conservation laws in a discrete level. The experimental observation and measurement of ultrashort pulses in waveguides is a hard job and this is the reason and stimulus to create mathematical models for computer simulations, as well as reliable algorithms for treating the governing equations. Along with the nonintegrability, one more problem appears here - the multidimensionality and necessity to split and linearize the operators in the appropriate way.
Providing a practical introduction to state space methods as
applied to unobserved components time series models, also known as
structural time series models, this book introduces time series
analysis using state space methodology to readers who are neither
familiar with time series analysis, nor with state space methods.
The only background required in order to understand the material
presented in the book is a basic knowledge of classical linear
regression models, of which brief review is provided to refresh the
reader's knowledge. Also, a few sections assume familiarity with
matrix algebra, however, these sections may be skipped without
losing the flow of the exposition.
Electroencephalography and magnetoencephalography are the two most efficient techniques to study the functional brain. This book completely aswers the fundamental mathematical question of uniqueness of the representations obtained using these techniques, and also covers many other concrete results for special geometric models of the brain, presenting the research of the authors and their groups in the last two decades.
The aim of this book is to present recent results in both theoretical and applied knot theory-which are at the same time stimulating for leading researchers in the field as well as accessible to non-experts. The book comprises recent research results while covering a wide range of different sub-disciplines, such as the young field of geometric knot theory, combinatorial knot theory, as well as applications in microbiology and theoretical physics.
This volume shares and makes accessible new research lines and recent results in several branches of theoretical and mathematical physics, among them Quantum Optics, Coherent States, Integrable Systems, SUSY Quantum Mechanics, and Mathematical Methods in Physics. In addition to a selection of the contributions presented at the "6th International Workshop on New Challenges in Quantum Mechanics: Integrability and Supersymmetry", held in Valladolid, Spain, 27-30 June 2017, several high quality contributions from other authors are also included. The conference gathered 60 participants from many countries working in different fields of Theoretical Physics, and was dedicated to Prof. Veronique Hussin-an internationally recognized expert in many branches of Mathematical Physics who has been making remarkable contributions to this field since the 1980s. The reader will find interesting reviews on the main topics from internationally recognized experts in each field, as well as other original contributions, all of which deal with recent applications or discoveries in the aforementioned areas.
Classical Mechanics teaches readers how to solve physics problems; in other words, how to put math and physics together to obtain a numerical or algebraic result and then interpret these results physically. These skills are important and will be needed in more advanced science and engineering courses. However, more important than developing problem-solving skills and physical-interpretation skills, the main purpose of this multi-volume series is to survey the basic concepts of classical mechanics and to provide the reader with a solid understanding of the foundational content knowledge of classical mechanics. Classical Mechanics: Conservation laws and rotational motion covers the conservation of energy and the conservation of momentum, which are crucial concepts in any physics course. It also introduces the concepts of center-of-mass and rotational motion.
This book revisits many of the problems encountered in introductory quantum mechanics, focusing on computer implementations for finding and visualizing analytical and numerical solutions. It subsequently uses these implementations as building blocks to solve more complex problems, such as coherent laser-driven dynamics in the Rubidium hyperfine structure or the Rashba interaction of an electron moving in 2D. The simulations are highlighted using the programming language Mathematica. No prior knowledge of Mathematica is needed; alternatives, such as Matlab, Python, or Maple, can also be used.
The revised edition gives a comprehensive mathematical and physical presentation of fluid flows in non-classical models of convection - relevant in nature as well as in industry. After the concise coverage of fluid dynamics and heat transfer theory it discusses recent research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fields.
This book uses art photography as a point of departure for learning about physics, while also using physics as a point of departure for asking fundamental questions about the nature of photography as an art. Although not a how-to manual, the topics center around hands-on applications, sometimes illustrated by photographic processes that are inexpensive and easily accessible to students (including a versatile new process developed by the author, and first described in print in this series). A central theme is the connection between the physical interaction of light and matter on the one hand, and the artistry of the photographic processes and their results on the other. One half of Energy and Color focuses on the physics of energy, power, illuminance, and intensity of light, and how these relate to the photographic exposure, including a detailed example that follows the emission of light from the sun all the way through to the formation of the image in the camera. These concepts are described in both their traditional manner, but also using very-low sensitivity photography as an example, which brings the physical concepts to the fore in a visible way, whereas they are often hidden with ordinary high-speed photographic detectors. Energy and Color also considers color in terms of the spectrum of light, how it interacts with the subject, and how the camera's light detector interacts with the image focused upon it. But of equal concern is the only partially-understood and sometimes unexpected ways in which the human eye/brain interprets this spectral stimulus as color. The volume covers basic photographic subjects such as shutter, aperture, ISO, metering and exposure value, but also given their relations to the larger themes of the book less familiar topics such as the Jones-Condit equation, Lambertian versus isotropic reflections, reflection and response curves, and the opponent-process model of color perception. Although written at a beginning undergraduate level, the topics are chosen for their role in a more general discussion of the relation between science and art that is of interest to readers of all backgrounds and levels of expertise.
This book demonstrates some of the ways in which Microsoft Excel (R) may be used to solve numerical problems in the field of physics.
In Pi ( ) in Nature, Art, and Culture Marcel Danesi revisits the importance of as a pattern in the structure of reality, fitting in with the Pythagorean view of Order. Pi has cropped up in formulas that describe natural and physical structures which, on the surface, seem to have nothing to do with a circle, but might harbor the archetype of circularity as a principle. Through , this book thus revisits the implicit ancient Greek view that geometry was a 'hermeneutic science,' a discipline aiming to investigate the connectivity among numbers, shapes, and natural phenomena. It also examines its manifestations in aesthetic, symbolic and cultural structures, which point to an abiding fascination with the circle as an unconscious archetype. Hermeneutic geometry is ultimately about the exploration of the meanings of geometric-mathematical notions to science and human life.
This book discusses in detail the special theory of relativity without including all the instruments of theoretical physics, enabling readers who are not budding theoretical physicists to develop competence in the field. An arbitrary but fixed inertial system is chosen, where the known velocity of light is measured. With respect to this system a moving clock loses time and a moving length contracts. The book then presents a definition of simultaneity for the other inertial frames without using the velocity of light. To do so it employs the known reciprocity principle, which in this context serves to provide a definition of simultaneity in the other inertial frames. As a consequence, the Lorentz transformation is deduced and the universal constancy of light is established. With the help of a lattice model of the special theory of relativity the book provides a deeper understanding of the relativistic effects. Further, it discusses the key STR experiments and formulates and solves 54 problems in detail. |
You may like...
Security in IoT Social Networks
Fadi Al-Turjman, B.D. Deebak
Paperback
R2,634
Discovery Miles 26 340
Artificial Intelligence for Neurological…
Ajith Abraham, Sujata Dash, …
Paperback
R3,925
Discovery Miles 39 250
Challenges in Computational Statistics…
Stan Matwin, Jan Mielniczuk
Hardcover
Measures of Complexity - Festschrift for…
Vladimir Vovk, Harris Papadopoulos, …
Hardcover
Probabilistic Prognostics and Health…
Stephen Ekwaro-Osire, Aparecido Carlos Goncalves, …
Hardcover
R3,389
Discovery Miles 33 890
AI, IoT, and Blockchain Breakthroughs in…
Kavita Saini, N.S. Gowri Ganesh, …
Hardcover
R5,937
Discovery Miles 59 370
|