![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > General
Ideal for college students in intermediate finance courses, this book uniquely applies mathematical formulas to teach the underpinnings of financial and lending decisions, covering common applications in real estate, capital budgeting, and commercial loans. An updated and expanded version of the time-honored classic text on financial math, this book provides, in one place, a complete and practical treatment of the four primary venues for finance: commercial lending, financial formulas, mortgage lending, and resource allocation or capital budgeting techniques. With an emphasis on understanding the principles involved rather than blind reliance on formulas, the book provides rigorous and thorough explanations of the mathematical calculations used in determining the time value of money, valuation of loans by commercial banks, valuation of mortgages, and the cost of capital and capital budgeting techniques for single as well as mutually exclusive projects. This new edition devotes an entire chapter to a method of evaluating mutually exclusive projects without resorting to any imposed conditions. Two chapters not found in the previous edition address special topics in finance, including a novel and innovative way to approach amortization tables and the time value of money for cash flows when they increase geometrically or arithmetically. This new edition also features helpful how-to sections on Excel applications at the end of each appropriate chapter. Lays the foundation of all the topics that are typically covered in a financial management textbook or class Demonstrates how the mastery of a few basic concepts-such as the time value of money under all possible situations-allows for a precise understanding of more complex topics in finance Describes how all advanced capital budgeting techniques can be reduced to the simplest technique-the payback period method Examines traditional financial techniques using simple interest rate and accounting rate of return methods to conclusively show how these practices are now defunct
Quantum mechanics is one of the most fascinating, and at the same time most controversial, branches of contemporary science. Disputes have accompanied this science since its birth and have not ceased to this day. "Uncommon Paths in Quantum Physics" allows the reader to
contemplate deeply some ideas and methods that are seldom met in
the contemporary literature. Instead of widespread recipes of
mathematical physics, based on the solutions of
integro-differential equations, the book follows logical and partly
intuitional derivations of non-commutative algebra. Readers can
directly penetrate the abstract world of quantum mechanics.
Optimization is the act of obtaining the "best" result under given circumstances. In design, construction, and maintenance of any engineering system, engineers must make technological and managerial decisions to minimize either the effort or cost required or to maximize benefits. There is no single method available for solving all optimization problems efficiently. Several optimization methods have been developed for different types of problems. The optimum-seeking methods are mathematical programming techniques (specifically, nonlinear programming techniques). Nonlinear Optimization: Models and Applications presents the concepts in several ways to foster understanding. Geometric interpretation: is used to re-enforce the concepts and to foster understanding of the mathematical procedures. The student sees that many problems can be analyzed, and approximate solutions found before analytical solutions techniques are applied. Numerical approximations: early on, the student is exposed to numerical techniques. These numerical procedures are algorithmic and iterative. Worksheets are provided in Excel, MATLAB(R), and Maple(TM) to facilitate the procedure. Algorithms: all algorithms are provided with a step-by-step format. Examples follow the summary to illustrate its use and application. Nonlinear Optimization: Models and Applications: Emphasizes process and interpretation throughout Presents a general classification of optimization problems Addresses situations that lead to models illustrating many types of optimization problems Emphasizes model formulations Addresses a special class of problems that can be solved using only elementary calculus Emphasizes model solution and model sensitivity analysis About the author: William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. He received his Ph.D. at Clemson University and has taught at the United States Military Academy and at Francis Marion University where he was the chair of mathematics. He has written many publications, including over 20 books and over 150 journal articles. Currently, he is an adjunct professor in the Department of Mathematics at the College of William and Mary. He is the emeritus director of both the High School Mathematical Contest in Modeling and the Mathematical Contest in Modeling.
This monograph contains papers that were delivered at the special session on Geometric Potential Analysis, that was part of the Mathematical Congress of the Americas 2021, virtually held in Buenos Aires. The papers, that were contributed by renowned specialists worldwide, cover important aspects of current research in geometrical potential analysis and its applications to partial differential equations and mathematical physics.
For various scientific and engineering problems, how to deal with variables and parameters of uncertain value is an important issue. Full analysis of the specific errors in measurement, observations, experiments, and applications are vital in dealing with the parameters taken to simplify the problem. Mathematics of Uncertainty Modeling in the Analysis of Engineering and Science Problems aims to provide the reader with basic concepts for soft computing and other methods for various means of uncertainty in handling solutions, analysis, and applications. This book is an essential reference work for students, scholars, practitioners and researchers in the assorted fields of engineering and applied mathematics interested in a model for uncertain physical problems.
Randomness is an active element relevant to all scientific activities. The book explores the way in which randomness suffuses the human experience, starting with everyday chance events, followed by developments into modern probability theory, statistical mechanics, scientific data analysis, quantum mechanics, and quantum gravity. An accessible introduction to these theories is provided as a basis for going into deeper topics.Fowler unveils the influence of randomness in the two pillars of science, measurement and theory. Some emphasis is placed on the need and methods for optimal characterization of uncertainty. An example of the cost of neglecting this is the St. Petersburg Paradox, a theoretical game of chance with an infinite expected payoff value. The role of randomness in quantum mechanics reveals another particularly interesting finding: that in order for the physical universe to function as it does and permit conscious beings within it to enjoy sanity, irreducible randomness is necessary at the quantum level.The book employs a certain level of mathematics to describe physical reality in a more precise way that avoids the tendency of nonmathematical descriptions to be occasionally misleading. Thus, it is most readily digested by young students who have taken at least a class in introductory calculus, or professional scientists and engineers curious about the book's topics as a result of hearing about them in popular media. Readers not inclined to savor equations should be able to skip certain technical sections without losing the general flow of ideas. Still, it is hoped that even readers who usually avoid equations will give those within these pages a chance, as they may be surprised at how potentially foreboding concepts fall into line when one makes a legitimate attempt to follow a succession of mathematical implications.
Financial market modeling is a prime example of a real-life application of probability theory and stochastics. This authoritative book discusses the discrete-time approximation and other qualitative properties of models of financial markets, like the Black-Scholes model and its generalizations, offering in this way rigorous insights on one of the most interesting applications of mathematics nowadays.
Hulchul: The Common Ingredient of MotionMotionMotionMotion and Time Author, Sohan Jain, proposes the following in the book: Instants of Motion, Instants of Time and Time Outage: Just as time has instants of time, motion has instants of motion, too. Instants of time and motion can be divided into three classes: pure instants of time, pure instants of motion, and composite instants of time and motion. The sequences of the three types of instants are interspersed into a single sequence of their occurrences. A body does not experience time during pure instants of motion, a phenomenon we will call time outage -the cause of time dilation. Time outage is not continuous; it is intermittent. Internal and external motion of a body and their inheritance: Each body has, generally, two kinds of motions: internal motion and external motion. A body goes, wherever its outer bodies go. An inner body inherits external motion of its outer bodies. An outer body inherits internal motion of its inner bodies. Photons and light do not inherit motion; may be, this is why their motions are independent of their sources. Prime ticks, the building blocks of time and any motion: Motion of a common body is not continuous; it is intermittent. Any kind of motion is perceived to be made of discrete, indivisible tiny movements, called prime ticks (p-ticks). P-ticks are to motion what elementary particles are to matter or what photons are to light. There is time only because there is motion. Prime ticks are events and imply motion. Events have concurrency, which implies time. Total concurrency hulchul, a universal constant: Concurrency events of external and internal p-ticks of a body are precisely the instants of motion and time. The sum of the two is called the total concurrency hulchul (c-hulchul). Total c-hulchul is the same for all bodies. The proposed theory possibly explains: Why a particle accelerator works. Why atoms have compartmentalized internal structure. Why lighter bodies, such as elementary particles and photons, have wavy straight motion rather than straight motion. The theory predicts: The sharing of an electron by two atoms is not continuous; it alternates between the two atoms.
This book pedagogically describes recent developments in gauge theory, in particular four-dimensional N = 2 supersymmetric gauge theory, in relation to various fields in mathematics, including algebraic geometry, geometric representation theory, vertex operator algebras. The key concept is the instanton, which is a solution to the anti-self-dual Yang-Mills equation in four dimensions. In the first part of the book, starting with the systematic description of the instanton, how to integrate out the instanton moduli space is explained together with the equivariant localization formula. It is then illustrated that this formalism is generalized to various situations, including quiver and fractional quiver gauge theory, supergroup gauge theory. The second part of the book is devoted to the algebraic geometric description of supersymmetric gauge theory, known as the Seiberg-Witten theory, together with string/M-theory point of view. Based on its relation to integrable systems, how to quantize such a geometric structure via the -deformation of gauge theory is addressed. The third part of the book focuses on the quantum algebraic structure of supersymmetric gauge theory. After introducing the free field realization of gauge theory, the underlying infinite dimensional algebraic structure is discussed with emphasis on the connection with representation theory of quiver, which leads to the notion of quiver W-algebra. It is then clarified that such a gauge theory construction of the algebra naturally gives rise to further affinization and elliptic deformation of W-algebra.
Conventional methods of financial modeling are often overly exact, to the point that their purpose--to aid in financial decision making--is easily lost. Tarrazo's approach, the use of approximation, gives professionals in finance, economics, and portfolio management a sound and sophisticated way to improve their decision making, particularly in such tasks as economic prediction, financial planning, and portfolio management. Tarrazo reviews how to build models, especially those with simultaneous equation systems, then provides a simple way to use approximate equation systems to solve them. Down to earth, readable, and meticulously explained throughout, the book is not only an important tool in practical problem solving situations, but it also provides valuable methods and guidance for upper level students and their instructors. Among the book's important contributions is its chapter on portfolio optimization. Tarrazo helps clarify the theory and application of modern portfolio theory, especially in regard to its implementation with commonly available information management tools (such as EXCEL). He also provides innovative ways to optimize portfolios under realistic conditions and a method to obtain optimal weights in interval form that does not rely on probability; instead, it relies on the mathematical quality of the matrix in the optimization. Another chapter shows that approximate equations are a general-purpose optimization tool, one that subsumes all other known optimization tools such as classical and mathematical programming. Tarrazo closes with an unusually full bibliography, containing more than 200 references spanning several areas of analysis and various disciplines.
Susanna Epp's DISCRETE MATHEMATICS WITH APPLICATIONS, 4e, International Edition provides a clear introduction to discrete mathematics. Renowned for her lucid, accessible prose, Epp explains complex, abstract concepts with clarity and precision. This book presents not only the major themes of discrete mathematics, but also the reasoning that underlies mathematical thought. Students develop the ability to think abstractly as they study the ideas of logic and proof. While learning about such concepts as logic circuits and computer addition, algorithm analysis, recursive thinking, computability, automata, cryptography, and combinatorics, students discover that the ideas of discrete mathematics underlie and are essential to the science and technology of the computer age. Overall, Epp's emphasis on reasoning provides students with a strong foundation for computer science and upper-level mathematics courses.
This book aims to gather the insight of leading experts on corruption and anti-corruption studies working at the scientific frontier of this phenomenon using the multidisciplinary tools of data and network science, in order to present current theoretical, empirical, and operational efforts being performed in order to curb this problem. The research results strengthen the importance of evidence-based approaches in the fight against corruption in all its forms, and foster the discussion about the best ways to convert the obtained knowledge into public policy. The contributed chapters provide comprehensive and multidisciplinary approaches to handle the non-trivial structural and dynamical aspects that characterize the modern social, economic, political and technological systems where corruption takes place. This book will serve a broad multi-disciplinary audience from natural to social scientists, applied mathematicians, including law and policymakers.
This monograph develops an innovative approach that utilizes the Birman-Schwinger principle from quantum mechanics to investigate stability properties of steady state solutions in galactic dynamics. The opening chapters lay the framework for the main result through detailed treatments of nonrelativistic galactic dynamics and the Vlasov-Poisson system, the Antonov stability estimate, and the period function $T_1$. Then, as the main application, the Birman-Schwinger type principle is used to characterize in which cases the "best constant" in the Antonov stability estimate is attained. The final two chapters consider the relation to the Guo-Lin operator and invariance properties for the Vlasov-Poisson system, respectively. Several appendices are also included that cover necessary background material, such as spherically symmetric models, action-angle variables, relevant function spaces and operators, and some aspects of Kato-Rellich perturbation theory. A Birman-Schwinger Principle in Galactic Dynamics will be of interest to researchers in galactic dynamics, kinetic theory, and various aspects of quantum mechanics, as well as those in related areas of mathematical physics and applied mathematics.
During the past three decades, the development of nonlinear analysis, dynamical systems and their applications to science and engineering has stimulated renewed enthusiasm for the theory of Ordinary Differential Equations (ODE).This useful book, which is based on the lecture notes of a well-received graduate course, emphasizes both theory and applications, taking numerous examples from physics and biology to illustrate the application of ODE theory and techniques.Written in a straightforward and easily accessible style, this volume presents dynamical systems in the spirit of nonlinear analysis to readers at a graduate level and serves both as a textbook and as a valuable resource for researchers.This new edition contains corrections and suggestions from the various readers and users. A new chapter on Monotone Dynamical Systems is added to take into account the new developments in ordinary differential equations and dynamical systems.
This book provides awareness of methods used for functional encryption in the academic and professional communities. The book covers functional encryption algorithms and its modern applications in developing secure systems via entity authentication, message authentication, software security, cyber security, hardware security, Internet of Thing (IoT), cloud security, smart card technology, CAPTCHA, digital signature, and digital watermarking. This book is organized into fifteen chapters; topics include foundations of functional encryption, impact of group theory in cryptosystems, elliptic curve cryptography, XTR algorithm, pairing based cryptography, NTRU algorithms, ring units, cocks IBE schemes, Boneh-Franklin IBE, Sakai-Kasahara IBE, hierarchical identity based encryption, attribute based Encryption, extensions of IBE and related primitives, and digital signatures. Explains the latest functional encryption algorithms in a simple way with examples; Includes applications of functional encryption in information security, application security, and network security; Relevant to academics, research scholars, software developers, etc.
This book presents quantum theory as a theory based on new relationships among matter, thought, and experimental technology, as against those previously found in physics, relationships that also redefine those between mathematics and physics in quantum theory. The argument of the book is based on its title concept, reality without realism (RWR), and in the corresponding view, the RWR view, of quantum theory. The book considers, from this perspective, the thinking of Bohr, Heisenberg, Schroedinger, and Dirac, with the aim of bringing together the philosophy and history of quantum theory. With quantum theory, the book argues, the architecture of thought in theoretical physics was radically changed by the irreducible role of experimental technology in the constitution of physical phenomena, accordingly, no longer defined independently by matter alone, as they were in classical physics or relativity. Or so it appeared. For, quantum theory, the book further argues, made us realize that experimental technology, beginning with that of our bodies, irreducibly shapes all physical phenomena, and thus makes us rethink the relationships among matter, thought, and technology in all of physics.
This monograph explores classical electrodynamics from a geometrical perspective with a clear visual presentation throughout. Featuring over 200 figures, readers will delve into the definitions, properties, and uses of directed quantities in classical field theory. With an emphasis on both mathematical and electrodynamic concepts, the author's illustrative approach will help readers understand the critical role directed quantities play in physics and mathematics. Chapters are organized so that they gradually scale in complexity, and carefully guide readers through important topics. The first three chapters introduce directed quantities in three dimensions with and without the metric, as well as the development of the algebra and analysis of directed quantities. Chapters four through seven then focus on electrodynamics without the metric, such as the premetric case, waves, and fully covariant four-dimensional electrodynamics. Complementing the book's careful structure, exercises are included throughout for readers seeking further opportunities to practice the material. Directed Quantities in Electrodynamics will appeal to students, lecturers, and researchers of electromagnetism. It is particularly suitable as a supplement to standard textbooks on electrodynamics. |
![]() ![]() You may like...
Tailor-Made and Functionalized…
Hriday Bera, Buddhadev Layek, …
Paperback
R6,568
Discovery Miles 65 680
Modern Applications in Membrane Science…
Isabel Escobar, Bart Van der Bruggen
Hardcover
R5,821
Discovery Miles 58 210
Emerging Nanomedicines for Diabetes…
Michael K. Danquah, Jaison Jeevanandam
Paperback
R3,946
Discovery Miles 39 460
Modelling and Control in Biomedical…
David Dagan Feng, Janan Zaytoon
Paperback
|