![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > General
This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas.
This thesis describes pioneering research on the extension of plasmonics schemes to the regime of high-intensity lasers. By presenting a rich and balanced mix of experimentation, theory and simulation, it provides a comprehensive overview of the emerging field of high field plasmonics, including open issues and perspectives for future research. Combining specially designed targets and innovative materials with ultrashort, high-contrast laser pulses, the author experimentally demonstrates the effects of plasmon excitation on electron and ion emission. Lastly, the work investigates possible further developments with the help of numerical simulations, revealing the potential of plasmonics effects in the relativistic regime for advances in laser-driven sources of radiation, and for the manipulation of extreme light at the sub-micron scale.
This book provides a comprehensive introduction to numerical modeling of size effects in metal plasticity. The main classes of strain gradient plasticity formulations are described and efficiently implemented in the context of the finite element method. A robust numerical framework is presented and employed to investigate the role of strain gradients on structural integrity assessment. The results obtained reveal the need of incorporating the influence on geometrically necessary dislocations in the modeling of various damage mechanisms. Large gradients of plastic strain increase dislocation density, promoting strain hardening and elevating crack tip stresses. This stress elevation is quantified under both infinitesimal and finite deformation theories, rationalizing the experimental observation of cleavage fracture in the presence of significant plastic flow. Gradient-enhanced modeling of crack growth resistance, hydrogen diffusion and environmentally assisted cracking highlighted the relevance of an appropriate characterization of the mechanical response at the small scales involved in crack tip deformation. Particularly promising predictions are attained in the field of hydrogen embrittlement. The research has been conducted at the Universities of Cambridge, Oviedo, Luxembourg, and the Technical University of Denmark, in a collaborative effort to understand, model and optimize the mechanical response of engineering materials.
The present volume contains the Proceedings of the International Conference on Spectral Theory and Mathematical Physics held in Santiago de Chile in November 2014. Main topics are: Ergodic Quantum Hamiltonians, Magnetic Schroedinger Operators, Quantum Field Theory, Quantum Integrable Systems, Scattering Theory, Semiclassical and Microlocal Analysis, Spectral Shift Function and Quantum Resonances. The book presents survey articles as well as original research papers on these topics. It will be of interest to researchers and graduate students in Mathematics and Mathematical Physics.
This book provides the mathematical foundations for Feynman's operator calculus and for the Feynman path integral formulation of quantum mechanics as a natural extension of analysis and functional analysis to the infinite-dimensional setting. In one application, the results are used to prove the last two remaining conjectures of Freeman Dyson for quantum electrodynamics. In another application, the results are used to unify methods and weaken domain requirements for non-autonomous evolution equations. Other applications include a general theory of Lebesgue measure on Banach spaces with a Schauder basis and a new approach to the structure theory of operators on uniformly convex Banach spaces. This book is intended for advanced graduate students and researchers.
Spectral methods have long been popular in direct and large eddy simulation of turbulent flows, but their use in areas with complex-geometry computational domains has historically been much more limited. More recently the need to find accurate solutions to the viscous flow equations around complex configurations has led to the development of high-order discretization procedures on unstructured meshes, which are also recognized as more efficient for solution of time-dependent oscillatory solutions over long time periods. Here Karniadakis and Sherwin present a much-updated and expanded version of their successful first edition covering the recent and significant progress in multi-domain spectral methods at both the fundamental and application level. Containing over 50% new material, including discontinuous Galerkin methods, non-tensorial nodal spectral element methods in simplex domains, and stabilization and filtering techniques, this text aims to introduce a wider audience to the use of spectral/hp element methods with particular emphasis on their application to unstructured meshes. It provides a detailed explanation of the key concepts underlying the methods along with practical examples of their derivation and application, and is aimed at students, academics and practitioners in computational fluid mechanics, applied and numerical mathematics, computational mechanics, aerospace and mechanical engineering and climate/ocean modelling.
Young traces the evolution of the term information from its general linguistic use into the mainstream of modern science, proposing an entirely new definition of information as a mass-energy phenomenon. He demonstrates that: information is in all cases a form phenomenon; both form and information are mass-energy rather than abstract phenomena; mind can be viewed as a mass-energy rather form-manipulating process; form constitutes a mechanism immanent in the physical universe via which mass-energy systems can communicate informationally and control their own energetic activities.
This book provides a comprehensive overview of different biomedical data types, including both clinical and genomic data. Thorough explanations enable readers to explore key topics ranging from electrocardiograms to Big Data health mining and EEG analysis techniques. Each chapter offers a summary of the field and a sample analysis. Also covered are telehealth infrastructure, healthcare information association rules, methods for mass spectrometry imaging, environmental biodiversity, and the global nonlinear fitness function for protein structures. Diseases are addressed in chapters on functional annotation of lncRNAs in human disease, metabolomics characterization of human diseases, disease risk factors using SNP data and Bayesian methods, and imaging informatics for diagnostic imaging marker selection. With the exploding accumulation of Electronic Health Records (EHRs), there is an urgent need for computer-aided analysis of heterogeneous biomedical datasets. Biomedical data is notorious for its diversified scales, dimensions, and volumes, and requires interdisciplinary technologies for visual illustration and digital characterization. Various computer programs and servers have been developed for these purposes by both theoreticians and engineers. This book is an essential reference for investigating the tools available for analyzing heterogeneous biomedical data. It is designed for professionals, researchers, and practitioners in biomedical engineering, diagnostics, medical electronics, and related industries.
This book gathers outstanding papers on numerical modeling in Mechanical Engineering (Volume 2) as part of the proceedings of the 1st International Conference on Numerical Modeling in Engineering (NME 2018), which was held in Ghent, Belgium. The overall objective of the conference was to bring together international scientists and engineers in academia and industry from fields related to advanced numerical techniques, such as the finite element method (FEM), boundary element method (BEM), isogeometric analysis (IGA), etc., and their applications to a wide range of engineering disciplines. This book addresses various industrial engineering applications of numerical simulations to Mechanical and Materials Engineering, including: Aerospace applications, Acoustic analysis, Biomechanical applications, Contact problems and wear, Heat transfer analysis, Vibration and dynamics, Transient analysis, Nonlinear analysis, Composite materials, Polymers, Metal alloys, Fracture mechanics, Fatigue of materials, Creep behavior, Phase transformation, and Crystal plasticity.
Provides the necessary skills to solve problems in mathematical statistics through theory, concrete examples, and exercises With a clear and detailed approach to the fundamentals of statistical theory, Examples and Problems in Mathematical Statistics uniquely bridges the gap between theory andapplication and presents numerous problem-solving examples that illustrate the relatednotations and proven results. Written by an established authority in probability and mathematical statistics, each chapter begins with a theoretical presentation to introduce both the topic and the important results in an effort to aid in overall comprehension. Examples are then provided, followed by problems, and finally, solutions to some of the earlier problems. In addition, Examples and Problems in Mathematical Statistics features: * Over 160 practical and interesting real-world examples from a variety of fields including engineering, mathematics, and statistics to help readers become proficient in theoretical problem solving * More than 430 unique exercises with select solutions * Key statistical inference topics, such as probability theory, statistical distributions, sufficient statistics, information in samples, testing statistical hypotheses, statistical estimation, confidence and tolerance intervals, large sample theory, and Bayesian analysis Recommended for graduate-level courses in probability and statistical inference, Examples and Problems in Mathematical Statistics is also an ideal reference for applied statisticians and researchers.
This monograph studies optimization problems for rigid punches in elastic media and for high-speed penetration of rigid strikers into deformed elastoplastic, concrete, and composite media using variational calculations, tools from functional analysis, and stochastic and min-max (guaranteed) optimization approaches with incomplete data. The book presents analytical and numerical results developed by the authors during the last ten years.
This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics. It reviews almost all areas of applied statistics, from basic statistical estimation and test theory, linear and nonlinear approaches for regression and classification, to model selection and methods for dimensionality reduction, density estimation and unsupervised clustering. Its focus, however, is linear and nonlinear time series analysis from a dynamical systems perspective, based on which it aims to convey an understanding also of the dynamical mechanisms that could have generated observed time series. Further, it integrates computational modeling of behavioral and neural dynamics with statistical estimation and hypothesis testing. This way computational models in neuroscience are not only explanatory frameworks, but become powerful, quantitative data-analytical tools in themselves that enable researchers to look beyond the data surface and unravel underlying mechanisms. Interactive examples of most methods are provided through a package of MatLab routines, encouraging a playful approach to the subject, and providing readers with a better feel for the practical aspects of the methods covered. "Computational neuroscience is essential for integrating and providing a basis for understanding the myriads of remarkable laboratory data on nervous system functions. Daniel Durstewitz has excellently covered the breadth of computational neuroscience from statistical interpretations of data to biophysically based modeling of the neurobiological sources of those data. His presentation is clear, pedagogically sound, and readily useable by experts and beginners alike. It is a pleasure to recommend this very well crafted discussion to experimental neuroscientists as well as mathematically well versed Physicists. The book acts as a window to the issues, to the questions, and to the tools for finding the answers to interesting inquiries about brains and how they function." Henry D. I. Abarbanel Physics and Scripps Institution of Oceanography, University of California, San Diego "This book delivers a clear and thorough introduction to sophisticated analysis approaches useful in computational neuroscience. The models described and the examples provided will help readers develop critical intuitions into what the methods reveal about data. The overall approach of the book reflects the extensive experience Prof. Durstewitz has developed as a leading practitioner of computational neuroscience. " Bruno B. Averbeck
In many disciplines of science it is vital to know the effect of a 'treatment' on a response variable of interest; the effect being known as the 'treatment effect'. Here, the treatment can be a drug, an education program or an economic policy, and the response variable can be an illness, academic achievement or GDP. Once the effect is found, it is possible to intervene to adjust the treatment and attain a desired level of the response variable. A basic way to measure the treatment effect is to compare two groups, one of which received the treatment and the other did not. If the two groups are homogenous in all aspects other than their treatment status, then the difference between their response outcomes is the desired treatment effect. But if they differ in some aspects in addition to the treatment status, the difference in the response outcomes may be due to the combined influence of more than one factor. In non-experimental data where the treatment is not randomly assigned but self-selected, the subjects tend to differ in observed or unobserved characteristics. It is therefore imperative that the comparison be carried out with subjects similar in their characteristics. This book explains how this problem can be overcome so the attributable effect of the treatment can be found. This book brings to the fore recent advances in econometrics for treatment effects. The purpose of this book is to put together various economic treatments effect models in a coherent fashion, make it clear which can be parameters of interest, and show how they can be identified and estimated under weak assumptions. The emphasis throughout the book is on semi- and non-parametric estimation methods, but traditional parametric approaches are also discussed. This book is ideally suited to researchers and graduate students with a basic knowledge of econometrics.
In this book, recent developments in our understanding of fundamental vortex ring and jet dynamics will be discussed, with a view to shed light upon their near-field behaviour which underpins much of their far-field characteristics. The chapters provide up-to-date research findings by their respective experts and seek to link near-field flow physics of vortex ring and jet flows with end-applications in mind. Over the past decade, our knowledge on vortex ring and jet flows has grown by leaps and bounds, thanks to increasing use of high-fidelity, high-accuracy experimental techniques and numerical simulations. As such, we now have a much better appreciation and understanding on the initiation and near-field developments of vortex ring and jet flows under many varied initial and boundary conditions. Chapter 1 outlines the vortex ring pinch-off phenomenon and how it relates to the initial stages of jet formations and subsequent jet behaviour, while Chapter 2 takes a closer look at the behaviour resulting from vortex ring impingement upon solid boundaries and how the use of a porous surface alters the impingement process. Chapters 3 and 4 focus upon the formation of synthetic jets from vortex ring structures experimentally and numerically, the challenges in understanding the relationships between their generation parameters and how they can be utilized in flow separation control problems. Chapter 5 looks at the use of imposing selected nozzle trailing-edge modifications to effect changes upon the near-field dynamics associated with circular, noncircular and coaxial jets, with a view to control their mixing behaviour. And last but not least, Chapter 6 details the use of unique impinging jet configurations and how they may lend themselves towards greater understanding and operating efficacies in heat transfer problems. This book will be useful to postgraduate students and researchers alike who wish to get up to speed regarding the latest developments in vortex ring and jet flow behaviour and how their interesting flow dynamics may be put into good use in their intended applications.
Much research into financial contagion and systematic risks has been motivated by the finding that cross-market correlations (resp. coexceedances) between asset returns increase significantly during crisis periods. Is this increase due to an exogenous shock common to all markets (interdependence) or due to certain types of transmission of shocks between markets (contagion)? Darolles and Gourieroux explain that an attempt to convey contagion and causality in a static framework can be flawed due to identification problems; they provide a more precise definition of the notion of shock to strengthen the solution within a dynamic framework. This book covers the standard practice for defining shocks in SVAR models, impulse response functions, identitification issues, static and dynamic models, leading to the challenges of measurement of systematic risk and contagion, with interpretations of hedge fund survival and market liquidity risks
This monograph presents a broad treatment of developments in an area of constructive approximation involving the so-called "max-product" type operators. The exposition highlights the max-product operators as those which allow one to obtain, in many cases, more valuable estimates than those obtained by classical approaches. The text considers a wide variety of operators which are studied for a number of interesting problems such as quantitative estimates, convergence, saturation results, localization, to name several. Additionally, the book discusses the perfect analogies between the probabilistic approaches of the classical Bernstein type operators and of the classical convolution operators (non-periodic and periodic cases), and the possibilistic approaches of the max-product variants of these operators. These approaches allow for two natural interpretations of the max-product Bernstein type operators and convolution type operators: firstly, as possibilistic expectations of some fuzzy variables, and secondly, as bases for the Feller type scheme in terms of the possibilistic integral. These approaches also offer new proofs for the uniform convergence based on a Chebyshev type inequality in the theory of possibility. Researchers in the fields of approximation of functions, signal theory, approximation of fuzzy numbers, image processing, and numerical analysis will find this book most beneficial. This book is also a good reference for graduates and postgraduates taking courses in approximation theory.
This book covers various algorithmic developments in the perfect reconstruction cosine/sine-modulated filter banks (TDAC-MDCT/MDST or MLT, MCLT, low delay MDCT, complex exponential/cosine/sine-modulated QMF filter banks), and near-perfect reconstruction QMF banks (pseudo-QMF banks) in detail, including their general mathematical properties, matrix representations, fast algorithms and various methods to integer approximations being recently a new transform technology for lossless audio coding. Each chapter will contain a number of examples and will conclude with problems and exercises. The book reflects the research efforts/activities and achieved results of the authors in the time period over the last 20 years.
This is a book about the Hilbert space formulation of quantum mechanics and its measurement theory. It contains a synopsis of what became of the Mathematical Foundations of Quantum Mechanics since von Neumann's classic treatise with this title. Fundamental non-classical features of quantum mechanics-indeterminacy and incompatibility of observables, unavoidable measurement disturbance, entanglement, nonlocality-are explicated and analysed using the tools of operational quantum theory. The book is divided into four parts: 1. Mathematics provides a systematic exposition of the Hilbert space and operator theoretic tools and relevant measure and integration theory leading to the Naimark and Stinespring dilation theorems; 2. Elements develops the basic concepts of quantum mechanics and measurement theory with a focus on the notion of approximate joint measurability; 3. Realisations offers in-depth studies of the fundamental observables of quantum mechanics and some of their measurement implementations; and 4. Foundations discusses a selection of foundational topics (quantum-classical contrast, Bell nonlocality, measurement limitations, measurement problem, operational axioms) from a measurement theoretic perspective. The book is addressed to physicists, mathematicians and philosophers of physics with an interest in the mathematical and conceptual foundations of quantum physics, specifically from the perspective of measurement theory.
This book introduces the fundamentals of computer vision (CV), with a focus on extracting useful information from digital images and videos. Including a wealth of methods used in detecting and classifying image objects and their shapes, it is the first book to apply a trio of tools (computational geometry, topology and algorithms) in solving CV problems, shape tracking in image object recognition and detecting the repetition of shapes in single images and video frames. Computational geometry provides a visualization of topological structures such as neighborhoods of points embedded in images, while image topology supplies us with structures useful in the analysis and classification of image regions. Algorithms provide a practical, step-by-step means of viewing image structures. The implementations of CV methods in Matlab and Mathematica, classification of chapter problems with the symbols (easily solved) and (challenging) and its extensive glossary of key words, examples and connections with the fabric of CV make the book an invaluable resource for advanced undergraduate and first year graduate students in Engineering, Computer Science or Applied Mathematics. It offers insights into the design of CV experiments, inclusion of image processing methods in CV projects, as well as the reconstruction and interpretation of recorded natural scenes.
This is the second edition of a well-received book that is a modern, self-contained introduction to the theory of gravitational interactions. The new edition includes more details on gravitational waves of cosmological origin, the so-called brane world scenario, and gravitational time-delay effects.The first part of the book follows the traditional presentation of general relativity as a geometric theory of the macroscopic gravitational field, while the second, more advanced part discusses the deep analogies (and differences) between a geometric theory of gravity and the gauge theories of the other fundamental interactions. This fills a gap within the traditional approach to general relativity which usually leaves students puzzled about the role of gravity. The required notions of differential geometry are reduced to the minimum, allowing room for aspects of gravitational physics of current phenomenological and theoretical interest, such as the properties of gravitational waves, the gravitational interactions of spinors, and the supersymmetric and higher-dimensional generalization of the Einstein equations. This textbook is primarily intended for students pursuing a theoretical or astroparticle curriculum but is also relevant for PhD students and young researchers.
This book provides a state-of-the-art overview on the dynamics and coevolution in multi-level strategic interaction games. As such it summarizes the results of the European CONGAS project, which developed new mathematical models and tools for the analysis, prediction and control of dynamical processes in systems possessing a rich multi-level structure and a web of interwoven interactions among elements with autonomous decision-making capabilities. The framework is built around game theoretical concepts, in particular evolutionary and multi-resolution games, and includes also techniques drawn from graph theory, statistical mechanics, control and optimization theory. Specific attention is devoted to systems that are prone to intermittency and catastrophic events due to the effect of collective dynamics.
Intersecting two large research areas - numerical analysis and applied probability/queuing theory - this book is a self-contained introduction to the numerical solution of structured Markov chains, which have a wide applicability in queuing theory and stochastic modeling and include M/G/1 and GI/M/1-type Markov chain, quasi-birth-death processes, non-skip free queues and tree-like stochastic processes. Written for applied probabilists and numerical analysts, but accessible to engineers and scientists working on telecommunications and evaluation of computer systems performances, it provides a systematic treatment of the theory and algorithms for important families of structured Markov chains and a thorough overview of the current literature. The book, consisting of nine Chapters, is presented in three parts. Part 1 covers a basic description of the fundamental concepts related to Markov chains, a systematic treatment of the structure matrix tools, including finite Toeplitz matrices, displacement operators, FFT, and the infinite block Toeplitz matrices, their relationship with matrix power series and the fundamental problems of solving matrix equations and computing canonical factorizations. Part 2 deals with the description and analysis of structure Markov chains and includes M/G/1, quasi-birth-death processes, non-skip-free queues and tree-like processes. Part 3 covers solution algorithms where new convergence and applicability results are proved. Each chapter ends with bibliographic notes for further reading, and the book ends with an appendix collecting the main general concepts and results used in the book, a list of the main annotations and algorithms used in the book, and an extensive index.
In accordance with the developments in computation, theoretical
studies on numerical schemes are now fruitful and highly needed. In
1991 an article on the finite element method applied to
evolutionary problems was published. Following the method,
basically this book studies various schemes from operator
theoretical points of view. Many parts are devoted to the finite
element method, but other schemes and problems (charge simulation
method, domain decomposition method, nonlinear problems, and so
forth) are also discussed, motivated by the observation that
practically useful schemes have fine mathematical structures and
the converses are also true. This book has the following chapters:
1. Boundary Value Problems and FEM. 2. Semigroup Theory and FEM. 3.
Evolution Equations and FEM. 4. Other Methods in Time
Discretization. 5. Other Methods in Space Discretization. 6.
Nonlinear Problems. 7. Domain Decomposition Method.
This volume collects contributions written by different experts in honor of Prof. Jaime Munoz Masque. It covers a wide variety of research topics, from differential geometry to algebra, but particularly focuses on the geometric formulation of variational calculus; geometric mechanics and field theories; symmetries and conservation laws of differential equations, and pseudo-Riemannian geometry of homogeneous spaces. It also discusses algebraic applications to cryptography and number theory. It offers state-of-the-art contributions in the context of current research trends. The final result is a challenging panoramic view of connecting problems that initially appear distant. |
You may like...
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
Multiscale Modeling of Vascular Dynamics…
Huilin Ye, Zhiqiang Shen, …
Paperback
R750
Discovery Miles 7 500
|