![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > General
This book is devoted to recent developments concerning linear operators, covering topics such as the Cauchy problem, Riesz basis, frames, spectral theory and applications to the Gribov operator in Bargmann space. Also, integral and integro-differential equations as well as applications to problems in mathematical physics and mechanics are discussed. Contents Introduction Linear operators Basic notations and results Bases Semi-groups Discrete operator and denseness of the generalized eigenvectors Frames in Hilbert spaces Summability of series -convergence operators -hypercyclic set of linear operators Analytic operators in Bela Szoekefalvi-Nagy's sense Bases of the perturbed operator T( ) Frame of the perturbed operator T( ) Perturbation method for sound radiation by a vibrating plate in a light fluid Applications to mathematical models Reggeon field theory
The fascinating world of canonical moments--a unique look at this
practical, powerful statistical and probability tool
This book presents the topology optimization theory for laminar flows with low and moderate Reynolds numbers, based on the density method and level-set method, respectively. The density-method-based theory offers efficient convergence, while the level-set-method-based theory can provide anaccurate mathematical expression of the structural boundary. Unsteady, body-force-driven and two-phase properties are basic characteristics of the laminar flows. The book discusses these properties, which are typical of microfluidics and one of the research hotspots in the area of Micro-Electro-Mechanical Systems (MEMS), providing an efficient inverse design approach for microfluidic structures. To demonstrate the applications of this topology optimization theory in the context of microfluidics, it also investigates inverse design for the micromixer, microvalve and micropump, which are key elements in lab-on-chip devices.
This book, dedicated to Winfried Stute on the occasion of his 70th birthday, presents a unique collection of contributions by leading experts in statistics, stochastic processes, mathematical finance and insurance. The individual chapters cover a wide variety of topics ranging from nonparametric estimation, regression modelling and asymptotic bounds for estimators, to shot-noise processes in finance, option pricing and volatility modelling. The book also features review articles, e.g. on survival analysis.
This book addresses mathematics in a wide variety of applications, ranging from problems in electronics, energy and the environment, to mechanics and mechatronics. Using the classification system defined in the EU Framework Programme for Research and Innovation H2020, several of the topics covered belong to the challenge climate action, environment, resource efficiency and raw materials; and some to health, demographic change and wellbeing; while others belong to Europe in a changing world - inclusive, innovative and reflective societies. The 19th European Conference on Mathematics for Industry, ECMI2016, was held in Santiago de Compostela, Spain in June 2016. The proceedings of this conference include the plenary lectures, ECMI awards and special lectures, mini-symposia (including the description of each mini-symposium) and contributed talks. The ECMI conferences are organized by the European Consortium for Mathematics in Industry with the aim of promoting interaction between academy and industry, leading to innovation in both fields and providing unique opportunities to discuss the latest ideas, problems and methodologies, and contributing to the advancement of science and technology. They also encourage industrial sectors to propose challenging problems where mathematicians can provide insights and fresh perspectives. Lastly, the ECMI conferences are one of the main forums in which significant advances in industrial mathematics are presented, bringing together prominent figures from business, science and academia to promote the use of innovative mathematics in industry.
The present book is the first of the two volume proceedings of the Mark Krein International Conference on Operator Theory and Applications. This conference, which was dedicated to the 90th anniversary of the prominent mathematician Mark Krein, was held in Odessa, Ukraine, from August 18-22, 1997. The conference focused on the main ideas, methods, results, and achievements of M. G. Krein. This first volume is devoted to the theory of differential operators and related topics. It opens with a description of the conference, biographical material and a number of survey papers about the work of M. G. Krein. The main part of the book consists of original research papers presenting the state of the art in the area of differential operators. The second volume of these proceedings, entitled Operator Theory and Related Topics, concerns the other aspects of the conference. The two volumes will be of interest to a wide range of readership in pure and applied mathematics, physics and engineering sciences.
Frank Arntzenius presents a series of radical new ideas about the structure of space and time. Space, Time, and Stuff is an attempt to show that physics is geometry: that the fundamental structure of the physical world is purely geometrical structure. Along the way, he examines some non-standard views about the structure of spacetime and its inhabitants, including the idea that space and time are pointless, the idea that quantum mechanics is a completely local theory, the idea that antiparticles are just particles travelling back in time, and the idea that time has no structure whatsoever. The main thrust of the book, however, is that there are good reasons to believe that spaces other than spacetime exist, and that it is the existence of these additional spaces that allows one to reduce all of physics to geometry. Philosophy, and metaphysics in particular, plays an important role here: the assumption that the fundamental laws of physics are simple in terms of the fundamental physical properties and relations is pivotal. Without this assumption one gets nowhere. That is to say, when trying to extract the fundamental structure of the world from theories of physics one ignores philosophy at one's peril!
Existence Theory for Generalized Newtonian Fluids provides a rigorous mathematical treatment of the existence of weak solutions to generalized Navier-Stokes equations modeling Non-Newtonian fluid flows. The book presents classical results, developments over the last 50 years of research, and recent results with proofs.
This new work by Wilfred Kaplan, the distinguished author of
influential mathematics and engineering texts, is destined to
become a classic. Timely, concise, and content-driven, it provides
an intermediate-level treatment of maxima, minima, and
optimization. Assuming only a background in calculus and some
linear algebra, Professor Kaplan presents topics in order of
difficulty. In four short chapters, he describes basic concepts and
geometric aspects of maxima and minima, progresses to problems with
side conditions, introduces optimization and programming, and
concludes with an in-depth discussion of research topics involving
the duality theorems of Fenchel and Rockafellar. Throughout the
text, the subject of convexity is gradually developed-from its
theoretical underpinnings to problems, and finally, to its role in
applications. Other features include:
This book treats dynamic stability of structures under nonconservative forces. it is not a mathematics-based, but rather a dynamics-phenomena-oriented monograph, written with a full experimental background. Starting with fundamentals on stability of columns under nonconservative forces, it then deals with the divergence of Euler's column under a dead (conservative) loading from a view point of dynamic stability. Three experiments with cantilevered columns under a rocket-based follower force are described to present the verifiability of nonconservative problems of structural stability. Dynamic stability of columns under pulsating forces is discussed through analog experiments, and by analytical and experimental procedures together with related theories. Throughout the volume the authors retain a good balance between theory and experiments on dynamic stability of columns under nonconservative loading, offering a new window to dynamic stability of structures, promoting student- and scientist-friendly experiments.
Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and their Applications is a rich and self-contained exposition of recent developments in Riemannian submersions and maps relevant to complex geometry, focusing particularly on novel submersions, Hermitian manifolds, and K\{a}hlerian manifolds. Riemannian submersions have long been an effective tool to obtain new manifolds and compare certain manifolds within differential geometry. For complex cases, only holomorphic submersions function appropriately, as discussed at length in Falcitelli, Ianus and Pastore's classic 2004 book. In this new book, Bayram Sahin extends the scope of complex cases with wholly new submersion types, including Anti-invariant submersions, Semi-invariant submersions, slant submersions, and Pointwise slant submersions, also extending their use in Riemannian maps. The work obtains new properties of the domain and target manifolds and investigates the harmonicity and geodesicity conditions for such maps. It also relates these maps with discoveries in pseudo-harmonic maps. Results included in this volume should stimulate future research on Riemannian submersions and Riemannian maps.
Interest in the area of control of systems defined by partial differential Equations has increased strongly in recent years. A major reason has been the requirement of these systems for sensible continuum mechanical modelling and optimization or control techniques which account for typical physical phenomena. Particular examples of problems on which substantial progress has been made are the control and stabilization of mechatronic structures, the control of growth of thin films and crystals, the control of Laser and semi-conductor devices, and shape optimization problems for turbomachine blades, shells, smart materials and microdiffractive optics. This volume contains original articles by world reknowned experts in the fields of optimal control of partial differential equations, shape optimization, numerical methods for partial differential equations and fluid dynamics, all of whom have contributed to the analysis and solution of many of the problems discussed. The collection provides a state-of-the-art overview of the most challenging and exciting recent developments in the field. It is geared towards postgraduate students and researchers dealing with the theoretical and practical aspects of a wide variety of high technology problems in applied mathematics, fluid control, optimal design, and computer modelling.
This book provides an up-to-date overview of results in rigid body dynamics, including material concerned with the analysis of nonintegrability and chaotic behavior in various related problems. The wealth of topics covered makes it a practical reference for researchers and graduate students in mathematics, physics and mechanics. Contents Rigid Body Equations of Motion and Their Integration The Euler - Poisson Equations and Their Generalizations The Kirchhoff Equations and Related Problems of Rigid Body Dynamics Linear Integrals and Reduction Generalizations of Integrability Cases. Explicit Integration Periodic Solutions, Nonintegrability, and Transition to Chaos Appendix A : Derivation of the Kirchhoff, Poincare - Zhukovskii, and Four-Dimensional Top Equations Appendix B: The Lie Algebra e(4) and Its Orbits Appendix C: Quaternion Equations and L-A Pair for the Generalized Goryachev - Chaplygin Top Appendix D: The Hess Case and Quantization of the Rotation Number Appendix E: Ferromagnetic Dynamics in a Magnetic Field Appendix F: The Landau - Lifshitz Equation, Discrete Systems, and the Neumann Problem Appendix G: Dynamics of Tops and Material Points on Spheres and Ellipsoids Appendix H: On the Motion of a Heavy Rigid Body in an Ideal Fluid with Circulation Appendix I: The Hamiltonian Dynamics of Self-gravitating Fluid and Gas Ellipsoids
This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundations of deep learning techniques for music generation. They also develop a conceptual framework used to classify and analyze various types of architecture, encoding models, generation strategies, and ways to control the generation. The five dimensions of this framework are: objective (the kind of musical content to be generated, e.g., melody, accompaniment); representation (the musical elements to be considered and how to encode them, e.g., chord, silence, piano roll, one-hot encoding); architecture (the structure organizing neurons, their connexions, and the flow of their activations, e.g., feedforward, recurrent, variational autoencoder); challenge (the desired properties and issues, e.g., variability, incrementality, adaptability); and strategy (the way to model and control the process of generation, e.g., single-step feedforward, iterative feedforward, decoder feedforward, sampling). To illustrate the possible design decisions and to allow comparison and correlation analysis they analyze and classify more than 40 systems, and they discuss important open challenges such as interactivity, originality, and structure. The authors have extensive knowledge and experience in all related research, technical, performance, and business aspects. The book is suitable for students, practitioners, and researchers in the artificial intelligence, machine learning, and music creation domains. The reader does not require any prior knowledge about artificial neural networks, deep learning, or computer music. The text is fully supported with a comprehensive table of acronyms, bibliography, glossary, and index, and supplementary material is available from the authors' website.
This is the second part of a two volume anthology comprising a selection of 49 articles that illustrate the depth, breadth and scope of Nigel Kalton's research. Each article is accompanied by comments from an expert on the respective topic, which serves to situate the article in its proper context, to successfully link past, present and hopefully future developments of the theory and to help readers grasp the extent of Kalton's accomplishments. Kalton's work represents a bridge to the mathematics of tomorrow, and this book will help readers to cross it. Nigel Kalton (1946-2010) was an extraordinary mathematician who made major contributions to an amazingly diverse range of fields over the course of his career.
This book sets out to give a rigorous mathematical description of the greenhouse effect through the theory of infrared atmospheric emission. In contrast to traditional climatological analysis, this approach eschews empirical relations in favour of a strict thermodynamical derivation, based on data from NASA and from the HITRAN spectroscopy database. The results highlight new aspects of the role of clouds in the greenhouse effect.
This monograph is concerned with free-boundary problems of partial differential equations arising in the physical sciences and in engineering. The existence and uniqueness of solutions to the Hele-Shaw problem are derived and techniques to deal with the Muskat problem are discussed. Based on these, mathematical models for the dynamics of cracks in underground rocks and in-situ leaching are developed. Contents Introduction The Hele-Shaw problem A joint motion of two immiscible viscous fluids Mathematical models of in-situ leaching Dynamics of cracks in rocks Elements of continuum mechanics
This contributed volume features invited papers on current research and applications in mathematical structures. Featuring various disciplines in the mathematical sciences and physics, articles in this volume discuss fundamental scientific and mathematical concepts as well as their applications to topical problems. Special emphasis is placed on important methods, research directions and applications of analysis within and beyond each field. Covered topics include Metric operators and generalized hermiticity, Semi-frames, Hilbert-Schmidt operator, Symplectic affine action, Fractional Brownian motion, Walker Osserman metric, Nonlinear Maxwell equations, The Yukawa model, Heisenberg observables, Nonholonomic systems, neural networks, Seiberg-Witten invariants, photon-added coherent state, electrostatic double layers, and star products and functions. All contributions are from the participants of the conference held October 2016 in Cotonou, Benin in honor of Professor Mahouton Norbert Hounkonnou for his outstanding contributions to the mathematical and physical sciences and education. Accessible to graduate students and postdoctoral researchers, this volume is a useful resource to applied scientists, applied and pure mathematicians, and mathematical and theoretical physicists.
This book, featuring a truly interdisciplinary approach, provides an overview of cutting-edge mathematical theories and techniques that promise to play a central role in climate science. It brings together some of the most interesting overview lectures given by the invited speakers at an important workshop held in Rome in 2013 as a part of MPE2013 ("Mathematics of Planet Earth 2013"). The aim of the workshop was to foster the interaction between climate scientists and mathematicians active in various fields linked to climate sciences, such as dynamical systems, partial differential equations, control theory, stochastic systems, and numerical analysis. Mathematics and statistics already play a central role in this area. Likewise, computer science must have a say in the efforts to simulate the Earth's environment on the unprecedented scale of petabytes. In the context of such complexity, new mathematical tools are needed to organize and simplify the approach. The growing importance of data assimilation techniques for climate modeling is amply illustrated in this volume, which also identifies important future challenges.
This book is based on lectures given at the first edition of the Domoschool, the International Alpine School in Mathematics and Physics, held in Domodossola, Italy, in July 2018. It is divided into two parts. Part I consists of four sets of lecture notes. These are extended versions of lectures given at the Domoschool, written by well-known experts in mathematics and physics related to General Relativity. Part II collects talks by selected participants, focusing on research related to General Relativity.
This volume is a thorough introduction to contemporary research in
elasticity, and may be used as a working textbook at the graduate
level for courses in pure or applied mathematics or in continuum
mechanics. It provides a thorough description (with emphasis on the
nonlinear aspects) of the two competing mathematical models of
three-dimensional elasticity, together with a mathematical analysis
of these models. The book is as self-contained as possible.
In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions, and an exposition of the geometry of moving hypersurfaces.
The set of papers in this handbook reflect the varied theory and wide range of applications of network models. Two of the most vibrant applications areas of network models are telecommunications and transportation. Several chapters explicitly model issues arising in these problem domains. Research on network models has been closely aligned with the field of computer science both in developing data structures for efficiently implementing network algorithms and in analyzing the complexity of network problems and algorithms. The basic structure underlying all network problems is a graph. Thus, historically, there have been strong ties between network models and graph theory. A companion volume in the "Handbook" series, entitled "Network Routing", examines problems related to the movement of commodities over a network. The problems treated arise in several application areas including logistics, telecommunications, facility location, VLSI design, and economics.
This book introduces the development of self-interference (SI)-cancellation techniques for full-duplex wireless communication systems. The authors rely on estimation theory and signal processing to develop SI-cancellation algorithms by generating an estimate of the received SI and subtracting it from the received signal. The authors also cover two new SI-cancellation methods using the new concept of active signal injection (ASI) for full-duplex MIMO-OFDM systems. The ASI approach adds an appropriate cancelling signal to each transmitted signal such that the combined signals from transmit antennas attenuate the SI at the receive antennas. The authors illustrate that the SI-pre-cancelling signal does not affect the data-bearing signal. This book is for researchers and professionals working in wireless communications and engineers willing to understand the challenges of deploying full-duplex and practical solutions to implement a full-duplex system. Advanced-level students in electrical engineering and computer science studying wireless communications will also find this book useful as a secondary textbook.
This book focuses on the study of the interfacial water using molecular dynamics simulation and experimental sum frequency generation spectroscopy. It proposes a new definition of the free O-H groups at water-air interface and presents research on the structure and dynamics of these groups. Furthermore, it discusses the exponential decay nature of the orientation distribution of the free O-H groups of interfacial water and ascribes the origin of the down pointing free O-H groups to the presence of capillary waves on the surface. It also describes how, based on this new definition, a maximum surface H-bond density of around 200 K at ice surface was found, as the maximum results from two competing effects. Lastly, the book discusses the absorption of water molecules at the water-TiO2 interface. Providing insights into the combination of molecular dynamics simulation and experimental sum frequency generation spectroscopy, it is a valuable resource for researchers in the field. |
You may like...
Active Particles, Volume 1 - Advances in…
Nicola Bellomo, Pierre Degond, …
Hardcover
R3,522
Discovery Miles 35 220
Passivity-Based Control and Estimation…
Takeshi Hatanaka, Nikhil Chopra, …
Hardcover
R4,481
Discovery Miles 44 810
Nonlinear Approaches in Engineering…
Reza N. Jazar, Liming Dai
Hardcover
R4,319
Discovery Miles 43 190
Analysis, Control and Optimization of…
El-K ebir Boukas, Roland P Malham e
Hardcover
R2,672
Discovery Miles 26 720
Analysis and Design of Hybrid Systems…
Christos Cassandras, Alessandro Giua, …
Paperback
Systemics of Incompleteness and…
Gianfranco Minati, Mario R. Abram, …
Hardcover
R2,705
Discovery Miles 27 050
Control and Filtering for Semi-Markovian…
Fanbiao Li, Peng Shi, …
Hardcover
R3,316
Discovery Miles 33 160
Game-Theoretic Learning and Distributed…
Tatiana Tatarenko
Hardcover
Handbook of Research on Applied…
Snehanshu Saha, Abhyuday Mandal, …
Hardcover
R6,190
Discovery Miles 61 900
|