![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > General
This accessible monograph introduces physicists to the general relation between classical and quantum mechanics based on the mathematical idea of deformation quantization and describes an original approach to the theory of quantum integrable systems developed by the author.The first goal of the book is to develop of a common, coordinate free formulation of classical and quantum Hamiltonian mechanics, framed in common mathematical language.In particular, a coordinate free model of quantum Hamiltonian systems in Riemannian spaces is formulated, based on the mathematical idea of deformation quantization, as a complete physical theory with an appropriate mathematical accuracy.The second goal is to develop of a theory which allows for a deeper understanding of classical and quantum integrability. For this reason the modern separability theory on both classical and quantum level is presented. In particular, the book presents a modern geometric separability theory, based on bi-Poissonian and bi-presymplectic representations of finite dimensional Liouville integrable systems and their admissible separable quantizations.The book contains also a generalized theory of classical Stackel transforms and the discussion of the concept of quantum trajectories.In order to make the text consistent and self-contained, the book starts with a compact overview of mathematical tools necessary for understanding the remaining part of the book. However, because the book is dedicated mainly to physicists, despite its mathematical nature, it refrains from highlighting definitions, theorems or lemmas.Nevertheless, all statements presented are either proved or the reader is referred to the literature where the proof is available.
This book demonstrates Microsoft EXCEL(R)-based Fourier transform of selected physics examples, as well as describing spectral density of the auto-regression process in relation to Fourier transform. Rather than offering rigorous mathematics, the book provides readers with an opportunity to gain an understanding of Fourier transform through the examples. They will acquire and analyze their own data following the step-by-step procedure outlined, and a hands-on acoustic spectral analysis is suggested as the ideal long-term student project.
This book provides an interdisciplinary approach to complexity, combining ideas from areas like complex networks, cellular automata, multi-agent systems, self-organization and game theory. The first part of the book provides an extensive introduction to these areas, while the second explores a range of research scenarios. Lastly, the book presents CellNet, a software framework that offers a hands-on approach to the scenarios described throughout the book. In light of the introductory chapters, the research chapters, and the CellNet simulating framework, this book can be used to teach undergraduate and master's students in disciplines like artificial intelligence, computer science, applied mathematics, economics and engineering. Moreover, the book will be particularly interesting for Ph.D. and postdoctoral researchers seeking a general perspective on how to design and create their own models.
Domain theory is a subject that emerged as a response to natural concerns in the semantics of computation, and it involves the study of ordered sets that possess an unusual amount of mathematical structure. Disorder in Domain Theory explores the connection between domain theory and quantum information science and the concept that relates them: disorder.
This book is a rare jewel, describing fundamental research in a highly dynamic field of subatomic physics. It presents an overview of cross section measurements of deeply virtual Compton scattering. Understanding the structure of the proton is one of the most important challenges that physics faces today. A typical tool for experimentally accessing the internal structure of the proton is lepton-nucleon scattering. In particular, deeply virtual Compton scattering at large photon virtuality and small four-momentum transfer to the proton provides a tool for deriving a three-dimensional tomographic image of the proton. Using clear language, this book presents the highly complex procedure used to derive the momentum-dissected transverse size of the proton from a pioneering measurement taken at CERN. It describes in detail the foundations of the measurement and the data analysis, and includes exhaustive studies of potential systematic uncertainties, which could bias the result.
Numerical and computational methods play a major role in modelling compressible flow and are important tools in solving fluid dynamical problems faced in many areas of science and technology. This book thoroughly surveys and analyzes up-to-date methods, while reviewing the basic theoretical mathematical analysis.
This book addresses the mechanism of enrichment of heavy elements in galaxies, a long standing problem in astronomy. It mainly focuses on explaining the origin of heavy elements by performing state-of-the-art, high-resolution hydrodynamic simulations of dwarf galaxies. In this book, the author successfully develops a model of galactic chemodynamical evolution by means of which the neutron star mergers can be used to explain the observed abundance pattern of the heavy elements synthesized by the rapid neutron capture process, such as europium, gold, and uranium in the Local Group dwarf galaxies. The book argues that heavy elements are significant indicators of the evolutionary history of the early galaxies, and presents theoretical findings that open new avenues to understanding the formation and evolution of galaxies based on the abundance of heavy elements in metal-poor stars.
"Difference Equations, Second Edition," presents a practical introduction to this important field of solutions for engineering and the physical sciences. Topic coverage includes numerical analysis, numerical methods, differential equations, combinatorics and discrete modeling. A hallmark of this revision is the diverse application to many subfields of mathematics. * Phase plane analysis for systems of two linear equations
This thesis describes the structures of six-dimensional (6d) superconformal field theories and its torus compactifications. The first half summarizes various aspects of 6d field theories, while the latter half investigates torus compactifications of these theories, and relates them to four-dimensional superconformal field theories in the class, called class S. It is known that compactifications of 6d conformal field theories with maximal supersymmetries provide numerous insights into four-dimensional superconformal field theories. This thesis generalizes the story to the theories with smaller supersymmetry, constructing those six-dimensional theories as brane configurations in the M-theory, and highlighting the importance of fractionalization of M5-branes. This result establishes new dualities between the theories with eight supercharges.
This book encompasses a wide range of mathematical concepts
relating to regularly repeating surface decoration from basic
principles of symmetry to more complex issues of graph theory,
group theory and topology. It presents a comprehensive means of
classifying and constructing patterns and tilings. The
classification of designs is investigated and discussed forming a
broad basis upon which designers may build their own ideas. A wide
range of original illustrative material is included.
Containing an extensive illustration of the use of finite difference method in solving boundary value problem numerically, a wide class of differential equations have been numerically solved in this book.
This book provides a comprehensive review of complex networks from three different domains, presents novel methods for analyzing them, and highlights applications with accompanying case studies. Special emphasis is placed on three specific kinds of complex networks of high technological and scientific importance: software networks extracted from the source code of computer programs, ontology networks describing semantic web ontologies, and co-authorship networks reflecting collaboration in science. The book is primarily intended for researchers, teachers and students interested in complex networks and network data analysis. However, it will also be valuable for researchers dealing with software engineering, ontology engineering and scientometrics, as it demonstrates how complex network analysis can be used to address important research issues in these three disciplines.
This book features a selection of articles based on the XXXV Bialowieza Workshop on Geometric Methods in Physics, 2016. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field. Traditionally, the Bialowieza Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career researchers, and the book also includes extended abstracts of the lecture series.
Interesting to anybody who wants to unearth the real sense and nature of solitary waves, and the relevant mathematical tools to use for effective investigation and analysis of these phenomena, the text focuses on numerical analysis of solitons. The integrability and multidimensionality of solitons is inextricably bound up with the approach of investigation and, as the more physical systems are not fully integrable, even in one dimension, numerical analysis is the main tool to investigate and understand the pertinent physical mechanisms.
This book presents simple interdisciplinary stochastic models meant as a gentle introduction to the field of non-equilibrium statistical physics. It focuses on the analysis of two-state models with cooperative effects and explores a variety of mathematical techniques to solve the master equations that govern these models. The models discussed are at the confluence of nanophysics, biology, mathematics and the social science, and they provide a pedagogical path toward understanding the complex dynamics of particle self-assembly with the tools of statistical physics.
Analysis and Control of Polynomial Dynamic Models with Biological Applications synthesizes three mathematical background areas (graphs, matrices and optimization) to solve problems in the biological sciences (in particular, dynamic analysis and controller design of QP and polynomial systems arising from predator-prey and biochemical models). The book puts a significant emphasis on applications, focusing on quasi-polynomial (QP, or generalized Lotka-Volterra) and kinetic systems (also called biochemical reaction networks or simply CRNs) since they are universal descriptors for smooth nonlinear systems and can represent all important dynamical phenomena that are present in biological (and also in general) dynamical systems.
Explore real-world applications of selected mathematical theory, concepts, and methods Exploring related methods that can be utilized in various fields of practice from science and engineering to business, A First Course in Applied Mathematics details how applied mathematics involves predictions, interpretations, analysis, and mathematical modeling to solve real-world problems. Written at a level that is accessible to readers from a wide range of scientific and engineering fields, the book masterfully blends standard topics with modern areas of application and provides the needed foundation for transitioning to more advanced subjects. The author utilizes MATLAB(R) to showcase the presented theory and illustrate interesting real-world applications to Google's web page ranking algorithm, image compression, cryptography, chaos, and waste management systems. Additional topics covered include: Linear algebra Ranking web pages Matrix factorizations Least squares Image compression Ordinary differential equations Dynamical systems Mathematical models Throughout the book, theoretical and applications-oriented problems and exercises allow readers to test their comprehension of the presented material. An accompanying website features related MATLAB(R) code and additional resources. A First Course in Applied Mathematics is an ideal book for mathematics, computer science, and engineering courses at the upper-undergraduate level. The book also serves as a valuable reference for practitioners working with mathematical modeling, computational methods, and the applications of mathematics in their everyday work.
This volume emphasises studies related to
This thesis focuses on an unresolved problem in particle and nuclear physics: the relation between two important non-perturbative phenomena in quantum chromodynamics (QCD) - quark confinement and chiral symmetry breaking. The author develops a new analysis method in the lattice QCD, and derives a number of analytical formulae to express the order parameters for quark confinement, such as the Polyakov loop, its fluctuations, and the Wilson loop in terms of the Dirac eigenmodes closely related to chiral symmetry breaking. Based on the analytical formulae, the author analytically as well as numerically shows that at finite temperatures there is no direct one-to-one correspondence between them. The thesis describes this extraordinary achievement using the first-principle analysis, and proposes a possible new phase in which quarks are confined and chiral symmetry is restored.
This book provides a comprehensive and systematic approach to the study of the qualitative theory of boundedness, periodicity, and stability of Volterra difference equations. The book bridges together the theoretical aspects of Volterra difference equations with its applications to population dynamics. Applications to real-world problems and open-ended problems are included throughout. This book will be of use as a primary reference to researchers and graduate students who are interested in the study of boundedness of solutions, the stability of the zero solution, or in the existence of periodic solutions using Lyapunov functionals and the notion of fixed point theory.
This book presents the theory of electromagnetic pulses in a simple and physical way. All pulses discussed are exact solutions of the Maxwell equations, and have finite energy, momentum and angular momentum. The subject matter is restricted to free-space classical electrodynamics, but contact is made with quantum theory in proofs that causal pulses are equivalent to superpositions of photons.
In any linear system the input and the output are connected by means of a linear operator. When the input can be notionally represented by a function that is null valued everywhere except at a specific location in space-time, the corresponding output is called the Green function in field theories. Dyadic Green functions are commonplace in electromagnetics, because both the input and the output are vector functions of space and time. This book provides a survey of the state-of-the-art knowledge of infinite-space dyadic Green functions.
The portable Raspberry Pi computing platform with the power of Linux yields an exciting exploratory tool for beginning scientific computing. Science and Computing with Raspberry Pi takes the reader through explorations in a variety of computing exercises with the physical sciences. The book guides the user through: configuring your Raspberry Pi and Linux operating system; understanding the software requirements while using the Pi for scientific computing; computing exercises in physics, astronomy, chaos theory, and machine learning.
The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids. |
You may like...
Multiscale Modeling of Vascular Dynamics…
Huilin Ye, Zhiqiang Shen, …
Paperback
R750
Discovery Miles 7 500
Spectral Properties of Certain Operators…
Ilwoo Cho, Hemen Dutta
Paperback
R3,507
Discovery Miles 35 070
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
|