![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Applied mathematics > General
Randomness is an active element relevant to all scientific activities. The book explores the way in which randomness suffuses the human experience, starting with everyday chance events, followed by developments into modern probability theory, statistical mechanics, scientific data analysis, quantum mechanics, and quantum gravity. An accessible introduction to these theories is provided as a basis for going into deeper topics.Fowler unveils the influence of randomness in the two pillars of science, measurement and theory. Some emphasis is placed on the need and methods for optimal characterization of uncertainty. An example of the cost of neglecting this is the St. Petersburg Paradox, a theoretical game of chance with an infinite expected payoff value. The role of randomness in quantum mechanics reveals another particularly interesting finding: that in order for the physical universe to function as it does and permit conscious beings within it to enjoy sanity, irreducible randomness is necessary at the quantum level.The book employs a certain level of mathematics to describe physical reality in a more precise way that avoids the tendency of nonmathematical descriptions to be occasionally misleading. Thus, it is most readily digested by young students who have taken at least a class in introductory calculus, or professional scientists and engineers curious about the book's topics as a result of hearing about them in popular media. Readers not inclined to savor equations should be able to skip certain technical sections without losing the general flow of ideas. Still, it is hoped that even readers who usually avoid equations will give those within these pages a chance, as they may be surprised at how potentially foreboding concepts fall into line when one makes a legitimate attempt to follow a succession of mathematical implications.
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory. This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance.
The book will benefit a reader with a background in physical sciences and applied mathematics interested in the mathematical models of genetic evolution. In the first chapter, we analyze several thought experiments based on a basic model of stochastic evolution of a single genomic site in the presence of the factors of random mutation, directional natural selection, and random genetic drift. In the second chapter, we present a more advanced theory for a large number of linked loci. In the third chapter, we include the effect of genetic recombination into account and find out the advantage of sexual reproduction for adaptation. These models are useful for the evolution of a broad range of asexual and sexual populations, including virus evolution in a host and a host population.
Spiritual Insights from the New Science is a guide to the deep spiritual wisdom drawn from one of the newest areas of science - the study of complex systems. The author, a former research scientist with over three decades of experience in the field of complexity science, tells her story of being attracted, as a young student, to the study of self-organizing systems where she encountered the strange and beautiful topics of chaos, fractals and other concepts that comprise complexity science. Using the events of her life, she describes lessons drawn from this science that provide insights into not only her own life, but all our lives. These insights show us how to weather the often disruptive events we all experience when growing and changing.The book goes on to explore, through the unfolding story of the author's life as a practicing scientist, other key concepts from the science of complex systems: cycles and rhythms, attractors and bifurcations, chaos, fractals, self-organization, and emergence. Examples drawn from religious rituals, dance, philosophical teachings, mysticism, native American spirituality, and other sources are used to illustrate how these scientific insights apply to all aspects of life, especially the spiritual. Spiritual Insights from the New Science shows the links between this new science and our human spirituality and presents, in engaging, accessible language, the argument that the study of nature can lead to a better understanding of the deepest meaning of our lives.
Spiritual Insights from the New Science is a guide to the deep spiritual wisdom drawn from one of the newest areas of science - the study of complex systems. The author, a former research scientist with over three decades of experience in the field of complexity science, tells her story of being attracted, as a young student, to the study of self-organizing systems where she encountered the strange and beautiful topics of chaos, fractals and other concepts that comprise complexity science. Using the events of her life, she describes lessons drawn from this science that provide insights into not only her own life, but all our lives. These insights show us how to weather the often disruptive events we all experience when growing and changing.The book goes on to explore, through the unfolding story of the author's life as a practicing scientist, other key concepts from the science of complex systems: cycles and rhythms, attractors and bifurcations, chaos, fractals, self-organization, and emergence. Examples drawn from religious rituals, dance, philosophical teachings, mysticism, native American spirituality, and other sources are used to illustrate how these scientific insights apply to all aspects of life, especially the spiritual. Spiritual Insights from the New Science shows the links between this new science and our human spirituality and presents, in engaging, accessible language, the argument that the study of nature can lead to a better understanding of the deepest meaning of our lives.
This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory " provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.
Quadratic equations, Pythagoras' theorem, imaginary numbers, and pi - you may remember studying these at school, but did anyone ever explain why? Never fear - bestselling science writer, and your new favourite maths teacher, Michael Brooks, is here to help. In The Maths That Made Us, Brooks reminds us of the wonders of numbers: how they enabled explorers to travel far across the seas and astronomers to map the heavens; how they won wars and halted the HIV epidemic; how they are responsible for the design of your home and almost everything in it, down to the smartphone in your pocket. His clear explanations of the maths that built our world, along with stories about where it came from and how it shaped human history, will engage and delight. From ancient Egyptian priests to the Apollo astronauts, and Babylonian tax collectors to juggling robots, join Brooks and his extraordinarily eccentric cast of characters in discovering how maths made us who we are today.
This is the second volume in a four-part series on fluid dynamics: Part 1. Classical Fluid Dynamics Part 2. Asymptotic Problems of Fluid Dynamics Part 3. Boundary Layers Part 4. Hydrodynamic Stability Theory The series is designed to give a comprehensive and coherent description of fluid dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. In Part 2 the reader is introduced to asymptotic methods, and their applications to fluid dynamics. Firstly, it discusses the mathematical aspects of the asymptotic theory. This is followed by an exposition of the results of inviscid flow theory, starting with subsonic flows past thin aerofoils. This includes unsteady flow theory and the analysis of separated flows. The authors then consider supersonic flow past a thin aerofoil, where the linear approximation leads to the Ackeret formula for the pressure. They also discuss the second order Buzemann approximation, and the flow behaviour at large distances from the aerofoil. Then the properties of transonic and hypersonic flows are examined in detail. Part 2 concludes with a discussion of viscous low-Reynolds-number flows. Two classical problems of the low-Reynolds-number flow theory are considered, the flow past a sphere and the flow past a circular cylinder. In both cases the flow analysis leads to a difficulty, known as Stokes paradox. The authors show that this paradox can be resolved using the formalism of matched asymptotic expansions.
The scale transitions are essential to physical knowledge. The book describes the history of essential moments of physics, viewed as necessary consequences of the unavoidable process of scale transition, and provides the mathematical techniques for the construction of a theoretical physics founded on scale transition. The indispensable mathematical technique is analyticity, helping in the construction of space coordinate systems. The indispensable theoretical technique from physical point of view is the affine theory of surfaces. The connection between the two techniques is provided by a duality in defining the physical properties.
Financial market modeling is a prime example of a real-life application of probability theory and stochastics. This authoritative book discusses the discrete-time approximation and other qualitative properties of models of financial markets, like the Black-Scholes model and its generalizations, offering in this way rigorous insights on one of the most interesting applications of mathematics nowadays.
This is a companion textbook for an introductory course in physics. It aims to link the theories and models that students learn in class with practical problem-solving techniques. In other words, it should address the common complaint that 'I understand the concepts but I can't do the homework or tests'. The fundamentals of introductory physics courses are addressed in simple and concise terms, with emphasis on how the fundamental concepts and equations should be used to solve physics problems.
This monograph describes advances in the theory of extremal problems in classes of functions defined by a majorizing modulus of continuity w. In particular, an extensive account is given of structural, limiting, and extremal properties of perfect w-splines generalizing standard polynomial perfect splines in the theory of Sobolev classes. In this context special attention is paid to the qualitative description of Chebyshev w-splines and w-polynomials associated with the Kolmogorov problem of n-widths and sharp additive inequalities between the norms of intermediate derivatives in functional classes with a bounding modulus of continuity. Since, as a rule, the techniques of the theory of Sobolev classes are inapplicable in such classes, novel geometrical methods are developed based on entirely new ideas. The book can be used profitably by pure or applied scientists looking for mathematical approaches to the solution of practical problems for which standard methods do not work. The scope of problems treated in the monograph, ranging from the maximization of integral functionals, characterization of the structure of equimeasurable functions, construction of Chebyshev splines through applications of fixed point theorems to the solution of integral equations related to the classical Euler equation, appeals to mathematicians specializing in approximation theory, functional and convex analysis, optimization, topology, and integral equations .
Without mathematics no science would survive. This especially applies to the engineering sciences which highly depend on the applications of mathematics and mathematical tools such as optimization techniques, finite element methods, differential equations, fluid dynamics, mathematical modelling, and simulation. Neither optimization in engineering, nor the performance of safety-critical system and system security; nor high assurance software architecture and design would be possible without the development of mathematical applications. De Gruyter Series on the Applications of Mathematics in Engineering and Information Sciences (AMEIS) focusses on the latest applications of engineering and information technology that are possible only with the use of mathematical methods. By identifying the gaps in knowledge of engineering applications the AMEIS series fosters the international interchange between the sciences and keeps the reader informed about the latest developments.
Bayesian analysis has developed rapidly in applications in the last
two decades and research in Bayesian methods remains dynamic and
fast-growing. Dramatic advances in modelling concepts and
computational technologies now enable routine application of
Bayesian analysis using increasingly realistic stochastic models,
and this drives the adoption of Bayesian approaches in many areas
of science, technology, commerce, and industry.
This book provides a survey of the frontiers of research in the
numerical modeling and mathematical analysis used in the study of
the atmosphere and oceans. The details of the current practices in
global atmospheric and ocean models, the assimilation of
observational data into such models and the numerical techniques
used in theoretical analysis of the atmosphere and ocean are among
the topics covered.
This book gives a rigorous, physics focused, introduction to set theory that is geared towards natural science majors.We present the science major with a robust introduction to set theory, focusing on the specific knowledge and skills that will unavoidably be needed in calculus topics and natural science topics in general, rather than taking a philosophical-math-fundamental oriented approach that is commonly found in set theory textbooks. |
You may like...
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,101
Discovery Miles 61 010
A Brief Introduction to Topology and…
Antonio Sergio Teixeira Pires
Paperback
R756
Discovery Miles 7 560
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
Spectral Properties of Certain Operators…
Ilwoo Cho, Hemen Dutta
Paperback
R3,507
Discovery Miles 35 070
|