![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > General
Maple is a comprehensive symbolic mathematics application which is well suited for demonstrating physical science topics and solving associated problems. Because Maple is such a rich application, it has a somewhat steep learning curve. Most existing texts concentrate on mathematics; the Maple help facility is too detailed and lacks physical science examples, many Maple-related websites are out of date giving readers information on older Maple versions. This book records the author's journey of discovery; he was familiar with SMath but not with Maple and set out to learn the more advanced application. It leads readers through the basic Maple features with physical science worked examples, giving them a firm base on which to build if more complex features interest them.
The introduction of cross diffusivity opens many questions in the theory of reactiondiffusion systems. This book will be the first to investigate such problems presenting new findings for researchers interested in studying parabolic and elliptic systems where classical methods are not applicable. In addition, The Gagliardo-Nirenberg inequality involving BMO norms is improved and new techniques are covered that will be of interest. This book also provides many open problems suitable for interested Ph.D students.
Combining insights from academic research and practical examples, this book aims to better understand the link between financial markets and innovation management. First, we are back to the very definition of innovation and what it means for financial and non-financial companies. Then, we analyze if efficient innovation management by companies is recognized and valued by financial markets. Finally, we focus on innovation within the financial sector: does it really create value outside the financial sector itself. Are Financial innovations value ... or risk creators?
The world of single-board computing puts powerful coding tools in the palm of your hand. The portable Raspberry Pi computing platform with the power of Linux yields an exciting exploratory tool for beginning scientific computing. Science and Computing with Raspberry Pi takes the enterprising researcher, student, or hobbyist through explorations in a variety of computing exercises with the physical sciences. The book has tutorials and exercises for a wide range of scientific computing problems while guiding the user through: Configuring your Raspberry Pi and Linux operating system Understanding the software requirements while using the Pi for scientific computing Computing exercises in physics, astronomy, chaos theory, and machine learning
This book uses art photography as a point of departure for learning about physics, while also using physics as a point of departure for asking fundamental questions about the nature of photography as an art. Although not a how-to manual, the topics center around hands-on applications, sometimes illustrated by photographic processes that are inexpensive and easily accessible to students (including a versatile new process developed by the author, and first described in print in this series). A central theme is the connection between the physical interaction of light and matter on the one hand, and the artistry of the photographic processes and their results on the other. This is the third volume in this three-part series that uses art photography as a point of departure for learning about physics, while also using physics as a point of departure for asking fundamental questions about the nature of photography as an art. It focuses on the physics and chemistry of photographic light-sensitive materials, as well as the human retina. It also considers the fundamental nature of digital photography and its relationship to the analog photography that preceded it.
This proceedings volume documents the contributions presented at the CONIAPS XXVII international Conference on Recent Advances in Pure and Applied Algebra. The entries focus on modern trends and techniques in various branches of pure and applied Algebra and highlight their applications in coding theory, cryptography, graph theory, and fuzzy theory.
This book on finite element-based computational methods for solving incompressible viscous fluid flow problems shows readers how to apply operator splitting techniques to decouple complicated computational fluid dynamics problems into a sequence of relatively simpler sub-problems at each time step, such as hemispherical cavity flow, cavity flow of an Oldroyd-B viscoelastic flow, and particle interaction in an Oldroyd-B type viscoelastic fluid. Efficient and robust numerical methods for solving those resulting simpler sub-problems are introduced and discussed. Interesting computational results are presented to show the capability of methodologies addressed in the book.
This book demonstrates Microsoft EXCEL-based Fourier transform of selected physics examples. Spectral density of the auto-regression process is also described in relation to Fourier transform. Rather than offering rigorous mathematics, readers will "try and feel" Fourier transform for themselves through the examples. Readers can also acquire and analyze their own data following the step-by-step procedure explained in this book. A hands-on acoustic spectral analysis can be one of the ideal long-term student projects.
This volume presents lectures given at the Wisła 20-21 Winter School and Workshop: Groups, Invariants, Integrals, and Mathematical Physics, organized by the Baltic Institute of Mathematics. The lectures were dedicated to differential invariants – with a focus on Lie groups, pseudogroups, and their orbit spaces – and Poisson structures in algebra and geometry and are included here as lecture notes comprising the first two chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and category theory. Specific topics covered include: The multisymplectic and variational nature of Monge-Ampère equations in dimension four Integrability of fifth-order equations admitting a Lie symmetry algebra Applications of the van Kampen theorem for groupoids to computation of homotopy types of striped surfaces A geometric framework to compare classical systems of PDEs in the category of smooth manifolds Groups, Invariants, Integrals, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry and category theory is assumed.
In 1940 G. H. Hardy published A Mathematician's Apology, a meditation on mathematics by a leading pure mathematician. Eighty-two years later, An Applied Mathematician's Apology is a meditation and also a personal memoir by a philosophically inclined numerical analyst, one who has found great joy in his work but is puzzled by its relationship to the rest of mathematics.
This book provides a concise introduction to both the special theory of relativity and the general theory of relativity. The format is chosen to provide the basis for a single semester course which can take the students all the way from the foundations of special relativity to the core results of general relativity: the Einstein equation and the equations of motion for particles and light in curved spacetime. To facilitate access to the topics of special and general relativity for science and engineering students without prior training in relativity or geometry, the relevant geometric notions are also introduced and developed from the ground up. Students in physics, mathematics or engineering with an interest to learn Einstein's theories of relativity should be able to use this book already in the second semester of their third year. The book could also be used as the basis of a graduate level introduction to relativity for students who did not learn relativity as part of their undergraduate training.
This book provides a set of theoretical and numerical tools useful for the study of wave propagation in metamaterials and photonic crystals. While concentrating on electromagnetic waves, most of the material can be used for acoustic (or quantum) waves. For each presented numerical method, numerical code written in MATLAB (R) is presented. The codes are limited to 2D problems and can be easily translated in Python or Scilab, and used directly with Octave as well.
Holographic dualities are at the forefront of contemporary physics research, peering into the fundamental nature of our universe and providing best attempt answers to humankind's bold questions about basic physical phenomena. Yet, the concepts, ideas and mathematical rigors associated with these dualities have long been reserved for the specific field researchers and experts. This book shatters this long held paradigm by bringing several aspects of holography research into the class room, starting at the college physics level and moving up from there.
Containing an extensive illustration of the use of finite difference method in solving boundary value problem numerically, a wide class of differential equations have been numerically solved in this book.
This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.
Using the familiar software Microsoft ® Excel, this book examines the applications of complex variables. Implementation of the included problems in Excel eliminates the “black box” nature of more advanced computer software and programming languages and therefore the reader has the chance to become more familiar with the underlying mathematics of the complex variable problems. This book consists of two parts. In Part I, several topics are covered that one would expect to find in an introductory text on complex variables. These topics include an overview of complex numbers, functions of a complex variable, and the Cauchy integral formula. In particular, attention is given to the study of analytic complex variable functions. This attention is warranted because of the property that the real and imaginary parts of an analytic complex variable function can be used to solve the Laplace partial differential equation (PDE). Laplace's equation is ubiquitous throughout science and engineering as it can be used to model the steady-state conditions of several important transport processes including heat transfer, soil-water flow, electrostatics, and ideal fluid flow, among others. In Part II, a specialty application of complex variables known as the Complex Variable Boundary Element Method (CVBEM) is examined. CVBEM is a numerical method used for solving boundary value problems governed by Laplace's equation. This part contains a detailed description of the CVBEM and a guide through each step of constructing two CVBEM programs in Excel. The writing of these programs is the culminating event of the book. Students of complex variables and anyone with interest in a novel method for approximating potential functions using the principles of complex variables are the intended audience for this book. The Microsoft Excel applications (including simple programs as well as the CVBEM program) covered will also be of interest in the industry, as these programs are accessible to anybody with Microsoft Office.
This book contains an extensive illustration of use of finite difference method in solving the boundary value problem numerically. A wide class of differential equations has been numerically solved in this book. Starting with differential equations of elementary functions like hyperbolic, sine and cosine, we have solved those of special functions like Hermite, Laguerre and Legendre. Those of Airy function, of stationary localised wavepacket, of the quantum mechanical problem of a particle in a 1D box, and the polar equation of motion under gravitational interaction have also been solved. Mathematica 6.0 has been used to solve the system of linear equations that we encountered and to plot the numerical data. Comparison with known analytic solutions showed nearly perfect agreement in every case. On reading this book, readers will become adept in using the method.
For courses in calculus-based physics. Practice makes perfect. The 15th Edition of University Physics with Modern Physics draws on a wealth of data insights from hundreds of faculty and thousands of student users to address one of the biggest challenges for students in introductory physics courses: seeing patterns and making connections between problem types. Students learn to recognise when to use similar steps in solving the same problem type and develop an understanding for problem solving approaches, rather than simply plugging in an equation. This edition addresses students' tendency to focus on the objects, situations, numbers, and questions posed in a problem, rather than recognising the underlying principle or the problem's type. New Key Concept statements at the end of worked examples address this challenge by identifying the main idea used in the solution to help students recognise the underlying concepts and strategy for the given problem. New Key Example Variation Problems appear within new Guided Practice sections and group problems by type to give students practice recognising when problems can be solved in a similar way, regardless of wording or numbers. These scaffolded problem sets help students see patterns, make connections between problems, and build confidence for tackling different problem types when exam time comes. |
![]() ![]() You may like...
Fluid Dynamics - Part 1: Classical Fluid…
Anatoly I. Ruban, Jitesh S. B. Gajjar
Hardcover
R2,545
Discovery Miles 25 450
Measurements and their Uncertainties - A…
Ifan Hughes, Thomas Hase
Hardcover
R2,916
Discovery Miles 29 160
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
|