![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > General
Quartic anharmonic oscillator with potential V(x)= x(2) + g(2)x4 was the first non-exactly-solvable problem tackled by the newly-written Schroedinger equation in 1926. Since that time thousands of articles have been published on the subject, mostly about the domain of small g(2) (weak coupling regime), although physics corresponds to g(2) ~ 1, and they were mostly about energies.This book is focused on studying eigenfunctions as a primary object for any g(2). Perturbation theory in g(2) for the logarithm of the wavefunction is matched to the true semiclassical expansion in powers of : it leads to locally-highly-accurate, uniform approximation valid for any g(2) [0, ) for eigenfunctions and even more accurate results for eigenvalues. This method of matching can be easily extended to the general anharmonic oscillator as well as to the radial oscillators. Quartic, sextic and cubic (for radial case) oscillators are considered in detail as well as quartic double-well potential.
Combining insights from academic research and practical examples, this book aims to better understand the link between financial markets and innovation management. First, we are back to the very definition of innovation and what it means for financial and non-financial companies. Then, we analyze if efficient innovation management by companies is recognized and valued by financial markets. Finally, we focus on innovation within the financial sector: does it really create value outside the financial sector itself. Are Financial innovations value ... or risk creators?
Maple is a comprehensive symbolic mathematics application which is well suited for demonstrating physical science topics and solving associated problems. Because Maple is such a rich application, it has a somewhat steep learning curve. Most existing texts concentrate on mathematics; the Maple help facility is too detailed and lacks physical science examples, many Maple-related websites are out of date giving readers information on older Maple versions. This book records the author's journey of discovery; he was familiar with SMath but not with Maple and set out to learn the more advanced application. It leads readers through the basic Maple features with physical science worked examples, giving them a firm base on which to build if more complex features interest them.
This volume presents lectures given at the Wisła 20-21 Winter School and Workshop: Groups, Invariants, Integrals, and Mathematical Physics, organized by the Baltic Institute of Mathematics. The lectures were dedicated to differential invariants – with a focus on Lie groups, pseudogroups, and their orbit spaces – and Poisson structures in algebra and geometry and are included here as lecture notes comprising the first two chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and category theory. Specific topics covered include: The multisymplectic and variational nature of Monge-Ampère equations in dimension four Integrability of fifth-order equations admitting a Lie symmetry algebra Applications of the van Kampen theorem for groupoids to computation of homotopy types of striped surfaces A geometric framework to compare classical systems of PDEs in the category of smooth manifolds Groups, Invariants, Integrals, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry and category theory is assumed.
The world of single-board computing puts powerful coding tools in the palm of your hand. The portable Raspberry Pi computing platform with the power of Linux yields an exciting exploratory tool for beginning scientific computing. Science and Computing with Raspberry Pi takes the enterprising researcher, student, or hobbyist through explorations in a variety of computing exercises with the physical sciences. The book has tutorials and exercises for a wide range of scientific computing problems while guiding the user through: Configuring your Raspberry Pi and Linux operating system Understanding the software requirements while using the Pi for scientific computing Computing exercises in physics, astronomy, chaos theory, and machine learning
The introduction of cross diffusivity opens many questions in the theory of reactiondiffusion systems. This book will be the first to investigate such problems presenting new findings for researchers interested in studying parabolic and elliptic systems where classical methods are not applicable. In addition, The Gagliardo-Nirenberg inequality involving BMO norms is improved and new techniques are covered that will be of interest. This book also provides many open problems suitable for interested Ph.D students.
In 1940 G. H. Hardy published A Mathematician's Apology, a meditation on mathematics by a leading pure mathematician. Eighty-two years later, An Applied Mathematician's Apology is a meditation and also a personal memoir by a philosophically inclined numerical analyst, one who has found great joy in his work but is puzzled by its relationship to the rest of mathematics.
This book uses art photography as a point of departure for learning about physics, while also using physics as a point of departure for asking fundamental questions about the nature of photography as an art. Although not a how-to manual, the topics center around hands-on applications, sometimes illustrated by photographic processes that are inexpensive and easily accessible to students (including a versatile new process developed by the author, and first described in print in this series). A central theme is the connection between the physical interaction of light and matter on the one hand, and the artistry of the photographic processes and their results on the other. This is the third volume in this three-part series that uses art photography as a point of departure for learning about physics, while also using physics as a point of departure for asking fundamental questions about the nature of photography as an art. It focuses on the physics and chemistry of photographic light-sensitive materials, as well as the human retina. It also considers the fundamental nature of digital photography and its relationship to the analog photography that preceded it.
This proceedings volume documents the contributions presented at the CONIAPS XXVII international Conference on Recent Advances in Pure and Applied Algebra. The entries focus on modern trends and techniques in various branches of pure and applied Algebra and highlight their applications in coding theory, cryptography, graph theory, and fuzzy theory.
This book demonstrates Microsoft EXCEL-based Fourier transform of selected physics examples. Spectral density of the auto-regression process is also described in relation to Fourier transform. Rather than offering rigorous mathematics, readers will "try and feel" Fourier transform for themselves through the examples. Readers can also acquire and analyze their own data following the step-by-step procedure explained in this book. A hands-on acoustic spectral analysis can be one of the ideal long-term student projects.
This book on finite element-based computational methods for solving incompressible viscous fluid flow problems shows readers how to apply operator splitting techniques to decouple complicated computational fluid dynamics problems into a sequence of relatively simpler sub-problems at each time step, such as hemispherical cavity flow, cavity flow of an Oldroyd-B viscoelastic flow, and particle interaction in an Oldroyd-B type viscoelastic fluid. Efficient and robust numerical methods for solving those resulting simpler sub-problems are introduced and discussed. Interesting computational results are presented to show the capability of methodologies addressed in the book.
This book provides a concise introduction to both the special theory of relativity and the general theory of relativity. The format is chosen to provide the basis for a single semester course which can take the students all the way from the foundations of special relativity to the core results of general relativity: the Einstein equation and the equations of motion for particles and light in curved spacetime. To facilitate access to the topics of special and general relativity for science and engineering students without prior training in relativity or geometry, the relevant geometric notions are also introduced and developed from the ground up. Students in physics, mathematics or engineering with an interest to learn Einstein's theories of relativity should be able to use this book already in the second semester of their third year. The book could also be used as the basis of a graduate level introduction to relativity for students who did not learn relativity as part of their undergraduate training.
PRACTICAL MATH APPLICATIONS, 3E offers users math skills needed for business and personal applications. The text begins with a comprehensive review of the basic math functions (addition, subtraction, multiplication, and division) and progresses to fractions and decimals. Once the students have mastered the basics, they are introduced to practical applications that develop critical thinking skills. These applications include bank records, purchasing and pricing merchandise, payroll, taxes, insurance, consumer credit, and interest (simple and compound). This easy-to-follow, step-by-step approach allows students to work at their own pace. Numerous self-help tips, practice activities, and self-assessments are provided so that each student feels competent in their newly acquired skill before moving on to the next.
Holographic dualities are at the forefront of contemporary physics research, peering into the fundamental nature of our universe and providing best attempt answers to humankind's bold questions about basic physical phenomena. Yet, the concepts, ideas and mathematical rigors associated with these dualities have long been reserved for the specific field researchers and experts. This book shatters this long held paradigm by bringing several aspects of holography research into the class room, starting at the college physics level and moving up from there.
This book provides a set of theoretical and numerical tools useful for the study of wave propagation in metamaterials and photonic crystals. While concentrating on electromagnetic waves, most of the material can be used for acoustic (or quantum) waves. For each presented numerical method, numerical code written in MATLAB (R) is presented. The codes are limited to 2D problems and can be easily translated in Python or Scilab, and used directly with Octave as well.
Containing an extensive illustration of the use of finite difference method in solving boundary value problem numerically, a wide class of differential equations have been numerically solved in this book. |
![]() ![]() You may like...
Advanced General Relativity - Gravity…
Claude Barrabes, Peter A. Hogan
Hardcover
R4,281
Discovery Miles 42 810
Exploring Quantum Mechanics - A…
Victor Galitski, Boris Karnakov, …
Hardcover
R6,230
Discovery Miles 62 300
Statistical Physics, Optimization…
Florent Krzakala, Federico Ricci Tersenghi, …
Hardcover
R2,437
Discovery Miles 24 370
Elements of Phase Transitions and…
Hidetoshi Nishimori, Gerardo Ortiz
Hardcover
R3,372
Discovery Miles 33 720
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
|