![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > General
Interest in the area of control of systems defined by partial differential Equations has increased strongly in recent years. A major reason has been the requirement of these systems for sensible continuum mechanical modelling and optimization or control techniques which account for typical physical phenomena. Particular examples of problems on which substantial progress has been made are the control and stabilization of mechatronic structures, the control of growth of thin films and crystals, the control of Laser and semi-conductor devices, and shape optimization problems for turbomachine blades, shells, smart materials and microdiffractive optics. This volume contains original articles by world reknowned experts in the fields of optimal control of partial differential equations, shape optimization, numerical methods for partial differential equations and fluid dynamics, all of whom have contributed to the analysis and solution of many of the problems discussed. The collection provides a state-of-the-art overview of the most challenging and exciting recent developments in the field. It is geared towards postgraduate students and researchers dealing with the theoretical and practical aspects of a wide variety of high technology problems in applied mathematics, fluid control, optimal design, and computer modelling.
This thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack propagation in elastic sheets and the control of unidirectional waves traveling at the boundary of metamaterials. The thesis examines the consequences of this geometric control in a range of materials spanning many orders of magnitude in length scale, from amorphous macroscopic networks and elastic continua to nanoscale lattices.
This book helps students, researchers and quantitative finance practitioners to understand both basic and advanced topics in the valuation and modeling of financial and commodity derivatives, their institutional framework and risk management. It provides an overview of the new regulatory requirements such as Basel III, the Fundamental Review of the Trading Book (FRTB), Interest Rate Risk of the Banking Book (IRRBB), or the Internal Capital Assessment Process (ICAAP). The reader will also find a detailed treatment of counterparty credit risk, stochastic volatility estimation methods such as MCMC and Particle Filters, and the concepts of model-free volatility, VIX index definition and the related volatility trading. The book can also be used as a teaching material for university derivatives and financial engineering courses.
Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn't require the use of divergent quantities and works on a large class of Lorenzian manifolds. We discuss in detail the examples of scalar fields, gauge theories and the effective quantum gravity. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all, of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses effective quantum gravity. The book aims to be accessible to researchers and graduate students, who are interested in the mathematical foundations of pQFT.
Designed to sit alongside more conventional established condensed matter physics textbooks, this compact volume offers a concise presentation of the principles of solid state theory, ideal for advanced students and researchers requiring an overview or a quick refresher on a specific topic. The book starts from the one-electron theory of solid state physics, moving through electron-electron interaction and many-body approximation schemes, to lattice oscillations and their interactions with electrons. Subsequent chapters discuss transport theory and optical properties, phase transitions and some properties of low-dimensional semiconductors. This extensively expanded second edition includes new material on adiabatic perturbation theory, kinetic coefficients, the Nyquist theorem, Bose condensation, and the field-theoretical approach to non-relativistic quantum electrodynamics. Throughout the text, mathematical proofs are often only sketched, and the final chapter of the book reviews some of the key concepts and formulae used in theoretical physics. Aimed primarily at graduate and advanced undergraduate students taking courses on condensed matter theory, the book serves as a study guide to reinforce concepts learned through conventional solid state texts. Researchers and lecturers will also find it a useful resource as a concise set of notes on fundamental topics.
This book is based on lectures given at the first edition of the Domoschool, the International Alpine School in Mathematics and Physics, held in Domodossola, Italy, in July 2018. It is divided into two parts. Part I consists of four sets of lecture notes. These are extended versions of lectures given at the Domoschool, written by well-known experts in mathematics and physics related to General Relativity. Part II collects talks by selected participants, focusing on research related to General Relativity.
Scholars in various fields are exploring similar ideas to combat indeterminism when conditions are chaotic and prohibit the use of a rigid program approach, even with probabilities. Many do not realize that they are dealing with the same issues that appear between chaos and full order (or stochastic processes) in a phase that lends itself to the same formal treatment. Examples are observed in the development of social systems, in the evaluation of the performance of a corporation or a position in chess, in the perception of artworks. Conceptualization of this treatment requires a better understanding of the category of indeterminism. Confirmation of this is the absence of separation between indeterminism and, especially, uncertainty. One indirect confirmation of this is the lack of a developed concept of the degree of indeterminism. The author contends that the category of indeterminism has its own meaning dealing with unavoidability. There are several phases in the spectrum of measurement of indeterminism, among which is a phase--a key phase of this book--which requires the introduction of the category of predisposition and a corresponding calculus of predisposition. By means of the aesthetic method, the degree of beauty (ugliness) measures perception by the given subjet of the predisposition for development of observable objects.
This volume offers a fundamentally different way of conceptualizing time and reality. Today, we see time predominantly as the linear-sequential order of events, and reality accordingly as consisting of facts that can be ordered along sequential time. But what if this conceptualization has us mistaking the "exhausts" for the "real thing", i.e. if we miss the best, the actual taking place of reality as it occurs in a very differently structured, primordial form of time, the time-space of the present? In this new conceptual framework, both the sequential aspect of time and the factual aspect of reality are emergent phenomena that come into being only after reality has actually taken place. In the new view, facts are just the "traces" that the actual taking place of reality leaves behind on the co-emergent "canvas'' of local spacetime. Local spacetime itself emerges only as facts come into being - and only facts can be adequately localized in it. But, how does reality then actually occur? It is conceived as a "constellatory self-unfolding", characterized by strong self-referentiality, and taking place in the primordial form of time, the not yet sequentially structured "time-space of the present". Time is seen here as an ontophainetic platform, i.e. as the stage on which reality can first occur. This view of time (and, thus, also space) seems to be very much in accordance with what we encounter in quantum physics before the so-called collapse of the wave function. In parallel, classical and relativistic physics largely operate within the factual portrait of reality, and the sequential aspect of time, respectively. Only singularities constitute an important exemption: here the canvas of local spacetime - that emerged together with factization - melts down again. In the novel framework quantum reduction and singularities can be seen and addressed as inverse transitions: In quantum physical state reduction reality "gains" the chrono-ontological format of facticity, and the sequential aspect of time becomes applicable. In singularities, by contrast, the inverse happens: Reality loses its local spacetime formation and reverts back into its primordial, pre-local shape - making in this way the use of causality relations, Boolean logic and the dichotomization of subject and object obsolete. For our understanding of the relation between quantum and relativistic physics this new view opens up fundamentally new perspectives: Both are legitimate views of time and reality, they just address very different chrono-ontological portraits, and thus should not lead us to erroneously subjugating one view under the other. The task of the book is to provide a formal framework in which this radically different view of time and reality can be addressed properly. The mathematical approach is based on the logical and topological features of the Borromean Rings. It draws upon concepts and methods of algebraic and geometric topology - especially the theory of sheaves and links, group theory, logic and information theory, in relation to the standard constructions employed in quantum mechanics and general relativity, shedding new light on the pestilential problems of their compatibility. The intended audience includes physicists, mathematicians and philosophers with an interest in the conceptual and mathematical foundations of modern physics.
This monograph takes stock of the situation in higher spin gauge theories for the first time. Besides a thorough recapitulation of the field's history, it reviews the progress that has been made and offers a pedagogical introduction to the subject. Abstract approaches to the theory are offered to facilitate a conceptual rethinking of the main problems and to help see patterns hidden by heavy formalism.
This book outlines a possible future theoretical perspective for systemics, its conceptual morphology and landscape while the Good-Old-Fashioned-Systemics (GOFS) era is still under way. The change from GOFS to future systemics can be represented, as shown in the book title, by the conceptual change from Collective Beings to Quasi-systems. With the current advancements, problems and approaches occurring in contemporary science, systemics are moving beyond the traditional frameworks used in the past. From Collective Beings to Coherent Quasi-Systems outlines a conceptual morphology and landscape for a new theoretical perspective for systemics introducing the concept of Quasi-systems. Advances in domains such as theoretical physics, philosophy of science, cell biology, neuroscience, experimental economics, network science and many others offer new concepts and technical tools to support the creation of a fully transdisciplinary General Theory of Change. This circumstance requires a deep reformulation of systemics, without forgetting the achievements of established conventions. The book is divided into two parts. Part I, examines classic systemic issues from new theoretical perspectives and approaches. A new general unified framework is introduced to help deal with topics such as dynamic structural coherence and Quasi-systems. This new theoretical framework is compared and contrasted with the traditional approaches. Part II focuses on the process of translation into social culture of the theoretical principles, models and approaches introduced in Part I. This translation is urgent in post-industrial societies where emergent processes and problems are still dealt with by using the classical or non-systemic knowledge of the industrial phase.
This book provides a comprehensive introduction to numerical modeling of size effects in metal plasticity. The main classes of strain gradient plasticity formulations are described and efficiently implemented in the context of the finite element method. A robust numerical framework is presented and employed to investigate the role of strain gradients on structural integrity assessment. The results obtained reveal the need of incorporating the influence on geometrically necessary dislocations in the modeling of various damage mechanisms. Large gradients of plastic strain increase dislocation density, promoting strain hardening and elevating crack tip stresses. This stress elevation is quantified under both infinitesimal and finite deformation theories, rationalizing the experimental observation of cleavage fracture in the presence of significant plastic flow. Gradient-enhanced modeling of crack growth resistance, hydrogen diffusion and environmentally assisted cracking highlighted the relevance of an appropriate characterization of the mechanical response at the small scales involved in crack tip deformation. Particularly promising predictions are attained in the field of hydrogen embrittlement. The research has been conducted at the Universities of Cambridge, Oviedo, Luxembourg, and the Technical University of Denmark, in a collaborative effort to understand, model and optimize the mechanical response of engineering materials.
This book introduces readers to MesoBioNano (MBN) Explorer - a multi-purpose software package designed to model molecular systems at various levels of size and complexity. In addition, it presents a specially designed multi-task toolkit and interface - the MBN Studio - which enables the set-up of input files, controls the simulations, and supports the subsequent visualization and analysis of the results obtained. The book subsequently provides a systematic description of the capabilities of this universal and powerful software package within the framework of computational molecular science, and guides readers through its applications in numerous areas of research in bio- and chemical physics and material science - ranging from the nano- to the mesoscale. MBN Explorer is particularly suited to computing the system's energy, to optimizing molecular structure, and to exploring the various facets of molecular and random walk dynamics. The package allows the use of a broad variety of interatomic potentials and can, e.g., be configured to select any subset of a molecular system as rigid fragments, whenever a significant reduction in the number of dynamical degrees of freedom is required for computational practicalities. MBN Studio enables users to easily construct initial geometries for the molecular, liquid, crystalline, gaseous and hybrid systems that serve as input for the subsequent simulations of their physical and chemical properties using MBN Explorer. Despite its universality, the computational efficiency of MBN Explorer is comparable to that of other, more specialized software packages, making it a viable multi-purpose alternative for the computational modeling of complex molecular systems. A number of detailed case studies presented in the second part of this book demonstrate MBN Explorer's usefulness and efficiency in the fields of atomic clusters and nanoparticles, biomolecular systems, nanostructured materials, composite materials and hybrid systems, crystals, liquids and gases, as well as in providing modeling support for novel and emerging technologies. Last but not least, with the release of the 3rd edition of MBN Explorer in spring 2017, a free trial version will be available from the MBN Research Center website (mbnresearch.com).
This book, featuring a truly interdisciplinary approach, provides an overview of cutting-edge mathematical theories and techniques that promise to play a central role in climate science. It brings together some of the most interesting overview lectures given by the invited speakers at an important workshop held in Rome in 2013 as a part of MPE2013 ("Mathematics of Planet Earth 2013"). The aim of the workshop was to foster the interaction between climate scientists and mathematicians active in various fields linked to climate sciences, such as dynamical systems, partial differential equations, control theory, stochastic systems, and numerical analysis. Mathematics and statistics already play a central role in this area. Likewise, computer science must have a say in the efforts to simulate the Earth's environment on the unprecedented scale of petabytes. In the context of such complexity, new mathematical tools are needed to organize and simplify the approach. The growing importance of data assimilation techniques for climate modeling is amply illustrated in this volume, which also identifies important future challenges.
This book is the first part of a two volume anthology comprising a selection of 49 articles that illustrate the depth, breadth and scope of Nigel Kalton's research. Each article is accompanied by comments from an expert on the respective topic, which serves to situate the article in its proper context, to successfully link past, present and hopefully future developments of the theory, and to help readers grasp the extent of Kalton's accomplishments. Kalton's work represents a bridge to the mathematics of tomorrow, and this book will help readers to cross it. Nigel Kalton (1946-2010) was an extraordinary mathematician who made major contributions to an amazingly diverse range of fields over the course of his career.
This thesis presents a pioneering method for gleaning the maximum information from the deepest images of the far-infrared universe obtained with the Herschel satellite, reaching galaxies fainter by an order of magnitude than in previous studies. Using these high-quality measurements, the author first demonstrates that the vast majority of galaxy star formation did not take place in merger-driven starbursts over 90% of the history of the universe, which suggests that galaxy growth is instead dominated by a steady infall of matter. The author further demonstrates that massive galaxies suffer a gradual decline in their star formation activity, providing an alternative path for galaxies to stop star formation. One of the key unsolved questions in astrophysics is how galaxies acquired their mass in the course of cosmic time. In the standard theory, the merging of galaxies plays a major role in forming new stars. Then, old galaxies abruptly stop forming stars through an unknown process. Investigating this theory requires an unbiased measure of the star formation intensity of galaxies, which has been unavailable due to the dust obscuration of stellar light.
This book gathers outstanding papers on numerical modeling in Mechanical Engineering (Volume 2) as part of the proceedings of the 1st International Conference on Numerical Modeling in Engineering (NME 2018), which was held in Ghent, Belgium. The overall objective of the conference was to bring together international scientists and engineers in academia and industry from fields related to advanced numerical techniques, such as the finite element method (FEM), boundary element method (BEM), isogeometric analysis (IGA), etc., and their applications to a wide range of engineering disciplines. This book addresses various industrial engineering applications of numerical simulations to Mechanical and Materials Engineering, including: Aerospace applications, Acoustic analysis, Biomechanical applications, Contact problems and wear, Heat transfer analysis, Vibration and dynamics, Transient analysis, Nonlinear analysis, Composite materials, Polymers, Metal alloys, Fracture mechanics, Fatigue of materials, Creep behavior, Phase transformation, and Crystal plasticity.
The set of papers in this handbook reflect the varied theory and wide range of applications of network models. Two of the most vibrant applications areas of network models are telecommunications and transportation. Several chapters explicitly model issues arising in these problem domains. Research on network models has been closely aligned with the field of computer science both in developing data structures for efficiently implementing network algorithms and in analyzing the complexity of network problems and algorithms. The basic structure underlying all network problems is a graph. Thus, historically, there have been strong ties between network models and graph theory. A companion volume in the "Handbook" series, entitled "Network Routing", examines problems related to the movement of commodities over a network. The problems treated arise in several application areas including logistics, telecommunications, facility location, VLSI design, and economics.
Rational extended thermodynamics (RET) is the theory that is applicable to nonequilibrium phenomena out of local equilibrium. It is expressed by the hyperbolic system of field equations with local constitutive equations and is strictly related to the kinetic theory with the closure method of the hierarchies of moment equations. The book intends to present, in a systematic way, new results obtained by RET of gases in both classical and relativistic cases, and it is a natural continuation of the book "Rational Extended Thermodynamics beyond the Monatomic Gas" by the same authors published in 2015. However, this book addresses much wider topics than those of the previous book. Its contents are as follows: RET of rarefied monatomic gases and of polyatomic gases; a simplified RET theory with 6 fields being valid far from equilibrium; RET where both molecular rotational and vibrational modes exist; mixture of gases with multi-temperature. The theory is applied to several typical topics (sound waves, shock waves, etc.) and is compared with experimental data. From a mathematical point of view, RET can be regarded as a theory of hyperbolic symmetric systems, of which it is possible to conduct a qualitative analysis. The book represents a valuable resource for applied mathematicians, physicists, and engineers, offering powerful models for many potential applications such as reentering satellites into the atmosphere, semiconductors, and nanoscale phenomena.
This textbook provides a concise introduction and useful overview of the field of human population genomics, making the highly technical and contemporary aspects more accessible to students and researchers from various fields. Over the past decade, there has been a deluge of genetic variation data from the entire genome of individuals from many populations. These data have allowed an unprecedented look at human history and how natural selection has impacted humans during this journey. Simultaneously, there have been increased efforts to determine how genetic variation affects complex traits in humans. Due to technological and methodological advances, progress has been made at determining the architecture of complex traits. Split in three parts, the book starts with the basics, followed by more advanced and current research. The first part provides an introduction to essential concepts in population genetics, which are relevant for any organism. The second part covers the genetics of complex traits in humans. The third part focuses on applying these techniques and concepts to genetic variation data to learn about demographic history and natural selection in humans. This new textbook aims to serve as a gateway to modern human population genetics research for those new to the field. It provides an indispensable resource for students, researchers and practitioners from disparate areas of expertise.
This book focuses on the study of the interfacial water using molecular dynamics simulation and experimental sum frequency generation spectroscopy. It proposes a new definition of the free O-H groups at water-air interface and presents research on the structure and dynamics of these groups. Furthermore, it discusses the exponential decay nature of the orientation distribution of the free O-H groups of interfacial water and ascribes the origin of the down pointing free O-H groups to the presence of capillary waves on the surface. It also describes how, based on this new definition, a maximum surface H-bond density of around 200 K at ice surface was found, as the maximum results from two competing effects. Lastly, the book discusses the absorption of water molecules at the water-TiO2 interface. Providing insights into the combination of molecular dynamics simulation and experimental sum frequency generation spectroscopy, it is a valuable resource for researchers in the field.
This thesis describes the application of a Monte Carlo radiative transfer code to accretion disc winds in two types of systems spanning 9 orders of magnitude in mass and size. In both cases, the results provide important new insights. On small scales, the presence of disc winds in accreting white dwarf binary systems has long been inferred from the presence of ultraviolet absorption lines. Here, the thesis shows that the same winds can also produce optical emission lines and a recombination continuum. On large scales, the thesis constructs a simple model of disc winds in quasars that is capable of explaining both the observed absorption and emission signatures - a crucial advance that supports a disc-wind based unification scenario for quasars. Lastly, the thesis also includes a theoretical investigation into the equivalent width distribution of the emission lines in quasars, which reveals a major challenge to all unification scenarios.
This book was written to serve as a graduate-level textbook for special topics classes in mathematics, statistics, and economics, to introduce these topics to other researchers, and for use in short courses. It is an introduction to the theory of majorization and related notions, and contains detailed material on economic applications of majorization and the Lorenz order, investigating the theoretical aspects of these two interrelated orderings. Revising and expanding on an earlier monograph, Majorization and the Lorenz Order: A Brief Introduction, the authors provide a straightforward development and explanation of majorization concepts, addressing historical development of the topics, and providing up-to-date coverage of families of Lorenz curves. The exposition of multivariate Lorenz orderings sets it apart from existing treatments of these topics. Mathematicians, theoretical statisticians, economists, and other social scientists who already recognize the utility of the Lorenz order in income inequality contexts and arenas will find the book useful for its sound development of relevant concepts rigorously linked to both the majorization literature and the even more extensive body of research on economic applications. Barry C. Arnold, PhD, is Distinguished Professor in the Statistics Department at the University of California, Riverside. He is a Fellow of the American Statistical Society, the American Association for the Advancement of Science, and the Institute of Mathematical Statistics, and is an elected member of the International Statistical Institute. He is the author of more than two hundred publications and eight books. Jose Maria Sarabia, PhD, is Professor of Statistics and Quantitative Methods in Business and Economics in the Department of Economics at the University of Cantabria, Spain. He is author of more than one hundred and fifty publications and ten books and is an associate editor of several journals including TEST, Communications in Statistics, and Journal of Statistical Distributions and Applications.
The book provides a state-of-art overview of computational methods for nonlinear aeroelasticity and load analysis, focusing on key techniques and fundamental principles for CFD/CSD coupling in temporal domain. CFD/CSD coupling software design and applications of CFD/CSD coupling techniques are discussed in detail as well. It is an essential reference for researchers and students in mechanics and applied mathematics.
This book provides an up-to-date description of the methods needed to face the existence of solutions to some nonlinear boundary value problems. All important and interesting aspects of the theory of periodic solutions of ordinary differential equations related to the physical and mathematical question of resonance are treated. The author has chosen as a model example the periodic problem for a second order scalar differential equation. In a paedagogical style the author takes the reader step by step from the basics to the most advanced existence results in the field.
This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas. |
![]() ![]() You may like...
The Nonlinear Schroedinger Equation
Nalan Antar, Ilkay Bakirtas
Hardcover
R3,413
Discovery Miles 34 130
Conway's Game of Life - Mathematics and…
Nathaniel Johnston, Dave Greene
Hardcover
R1,933
Discovery Miles 19 330
Mathematical Statistics with…
William Mendenhall, Dennis Wackerly, …
Paperback
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R4,084
Discovery Miles 40 840
|