![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Applied mathematics > General
In September 1997, the Working Week on Resolution of Singularities was held at Obergurgl in the Tyrolean Alps. Its objective was to manifest the state of the art in the field and to formulate major questions for future research. The four courses given during this week were written up by the speakers and make up part I of this volume. They are complemented in part II by fifteen selected contributions on specific topics and resolution theories. The volume is intended to provide a broad and accessible introduction to resolution of singularities leading the reader directly to concrete research problems.
This book showcases a subclass of hereditary systems, that is, systems with behaviour depending not only on their current state but also on their past history; it is an introduction to the mathematical theory of optimal control for stochastic difference Volterra equations of neutral type. As such, it will be of much interest to researchers interested in modelling processes in physics, mechanics, automatic regulation, economics and finance, biology, sociology and medicine for all of which such equations are very popular tools. The text deals with problems of optimal control such as meeting given performance criteria, and stabilization, extending them to neutral stochastic difference Volterra equations. In particular, it contrasts the difference analogues of solutions to optimal control and optimal estimation problems for stochastic integral Volterra equations with optimal solutions for corresponding problems in stochastic difference Volterra equations. Optimal Control of Stochastic Difference Volterra Equations commences with an historical introduction to the emergence of this type of equation with some additional mathematical preliminaries. It then deals with the necessary conditions for optimality in the control of the equations and constructs a feedback control scheme. The approximation of stochastic quasilinear Volterra equations with quadratic performance functionals is then considered. Optimal stabilization is discussed and the filtering problem formulated. Finally, two methods of solving the optimal control problem for partly observable linear stochastic processes, also with quadratic performance functionals, are developed. Integrating the author's own research within the context of the current state-of-the-art of research in difference equations, hereditary systems theory and optimal control, this book is addressed to specialists in mathematical optimal control theory and to graduate students in pure and applied mathematics and control engineering.
This thesis explores the idea that the Higgs boson of the Standard
Model and the cosmological inflation are just two manifestations of
one and the same scalar field - the Higgs-inflation. By this
unification two energy scales that are separated by many orders of
magnitude are connected, thereby building a bridge between particle
physics and cosmology. An essential ingredient for making this
model consistent with observational data is a strong non-minimal
coupling to gravity. Predictions for the value of the Higgs mass as
well as for cosmological parameters are derived, and can be tested
by future experiments. The results become especially exciting in
the light of the recently announced discovery of the Higgs boson.
Your Essential Guide to Quantitative Hedge Fund Investing provides a conceptual framework for understanding effective hedge fund investment strategies. The book offers a mathematically rigorous exploration of different topics, framed in an easy to digest set of examples and analogies, including stories from some legendary hedge fund investors. Readers will be guided from the historical to the cutting edge, while building a framework of understanding that encompasses it all. Features Filled with novel examples and analogies from within and beyond the world of finance Suitable for practitioners and graduate-level students with a passion for understanding the complexities that lie behind the raw mechanics of quantitative hedge fund investment A unique insight from an author with experience of both the practical and academic spheres.
This text takes readers in a clear and progressive format from simple to recent and advanced topics in pure and applied probability such as contraction and annealed properties of non-linear semi-groups, functional entropy inequalities, empirical process convergence, increasing propagations of chaos, central limit, and Berry Esseen type theorems as well as large deviation principles for strong topologies on path-distribution spaces. Topics also include a body of powerful branching and interacting particle methods.
This book offers a new approach to the long-standing problem of high-Tc copper-oxide superconductors. It has been demonstrated that starting from a strongly correlated Hamiltonian, even within the mean-field regime, the "competing orders" revealed by experiments can be achieved using numerical calculations. In the introduction, readers will find a brief review of the high-Tc problem and the unique challenges it poses, as well as a comparatively simple numerical approach, the renormalized mean-field theory (RMFT), which provides rich results detailed in the following chapters. With an additional phase picked up by the original Hamiltonian, some behaviors of interactive fermions under an external magnetic field, which have since been experimentally observed using cold atom techniques, are also highlighted.
This volume presents two reviews from the cutting-edge of Russian plasma physics research. Plasma Models of Atom and Radiative-Collisional Processes, by V.A. Astapenko, L.A. Bureyeva, V.S. Lisitsa, is devoted to a unified description of the atomic core polarization effects in the free-free, free-bound and bound-bound transitions of the charged particles in the field of multielectron atom. These effects were treated independently in various applications for more than 40 years. The universal description is based on statistical plasma models of atomic processes with complex ions and atoms. This description makes it possible to extract general scaling laws for the processes above. This review is the first attempt to give the universal approach to the problem. All types of transitions are considered in the frame of both classical and quantum models for the energy scattering of the particle interacting with the atomic core. of atoms and highly charged ions, polarization phenomena in photoeffect, new polarization channel in recombination and for Bremsstrahlung of electrons, relativistic and heavy particles on complex atoms and ions. Asymptotic Theory of Charge Exchange And Mobility Processes for Atomic Ions by B.M. Smirnov reviews the process of resonant charge exchange, and also the transport processes (mobility and diffusion coefficients) for ions in parent gases which are determined by resonant electron transfer. The basis is the asymptotic theory of resonant charge exchange that allows us to evaluate cross sections for all the elements and estimate their accuracy. A simple version of the asymptotic theory is used as follows: a parameter is the ratio between an atom cross section, and the cross section of resonant charge exchange. The cross section of this process is expressed through asymptotic parameters of a transferring electron it the atom. Experimental results are also used, but their accuracy is usually lower than can be obtained by the asymptotic theory
Mathematical methods play a significant role in the rapidly growing field of nonlinear optical materials. This volume discusses a number of successful or promising contributions. The overall theme of this volume is twofold: (1) the challenges faced in computing and optimizing nonlinear optical material properties; and (2) the exploitation of these properties in important areas of application. These include the design of optical amplifiers and lasers, as well as novel optical switches. Research topics in this volume include how to exploit the magnetooptic effect, how to work with the nonlinear optical response of materials, how to predict laser-induced breakdown in efficient optical devices, and how to handle electron cloud distortion in femtosecond processes.
The volume, devoted to variational analysis and its applications, collects selected and refereed contributions, which provide an outline of the field. The meeting of the title "Equilibrium Problems and Variational Models," which was held in Erice (Sicily) in the period June 23 - July 2 2000, was the occasion of the presentation of some of these papers; other results are a consequence of a fruitful and constructive atmosphere created during the meeting. New results, which enlarge the field of application of variational analysis, are presented in the book; they deal with the vectorial analysis, time dependent variational analysis, exact penalization, high order deriva tives, geometric aspects, distance functions and log-quadratic proximal methodology. The new theoretical results allow one to improve in a remarkable way the study of significant problems arising from the applied sciences, as continuum model of transportation, unilateral problems, multicriteria spatial price models, network equilibrium problems and many others. As noted in the previous book "Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models," edited by F. Giannessi, A. Maugeri and P.M. Pardalos, Kluwer Academic Publishers, Vol. 58 (2001), the progress obtained by variational analysis has permitted to han dle problems whose equilibrium conditions are not obtained by the mini mization of a functional. These problems obey a more realistic equilibrium condition expressed by a generalized orthogonality (complementarity) con dition, which enriches our knowledge of the equilibrium behaviour. Also this volume presents important examples of this formulation."
Multilevel decision theory arises to resolve the contradiction between increasing requirements towards the process of design, synthesis, control and management of complex systems and the limitation of the power of technical, control, computer and other executive devices, which have to perform actions and to satisfy requirements in real time. This theory rises suggestions how to replace the centralised management of the system by hierarchical co-ordination of sub-processes. All sub-processes have lower dimensions, which support easier management and decision making. But the sub-processes are interconnected and they influence each other. Multilevel systems theory supports two main methodological tools: decomposition and co-ordination. Both have been developed, and implemented in practical applications concerning design, control and management of complex systems. In general, it is always beneficial to find the best or optimal solution in processes of system design, control and management. The real tendency towards the best (optimal) decision requires to present all activities in the form of a definition and then the solution of an appropriate optimization problem. Every optimization process needs the mathematical definition and solution of a well stated optimization problem. These problems belong to two classes: static optimization and dynamic optimization. Static optimization problems are solved applying methods of mathematical programming: conditional and unconditional optimization. Dynamic optimization problems are solved by methods of variation calculus: Euler Lagrange method; maximum principle; dynamical programming."
The work developed in this thesis addresses very important and relevant issues of accretion processes around black holes. Beginning by studying the time variation of the evolution of inviscid accretion discs around black holes and their properties, the author investigates the change of the pattern of the flows when the strength of the shear viscosity is varied and cooling is introduced. He succeeds to verify theoretical predictions of the so called Two Component Advective Flow (TCAF) solution of the accretion problem onto black holes through numerical simulations under different input parameters. TCAF solutions are found to be stable. And thus explanations of spectral and timing properties (including Quasi-Period Oscillations, QPOs) of galactic and extra-galactic black holes based on shocked TCAF models appear to have a firm foundation.
The feasibility to extract porous medium parameters from acoustic
recordings is investigated. The thesis gives an excellent
discussion of our basic understanding of different wave modes,
using a full-waveform and multi-component approach. Focus lies on
the dependency on porosity and permeability where especially the
latter is difficult to estimate. In this thesis, this sensitivity
is shown for interface-wave and reflected-wave modes. For each of
the pseudo-Rayleigh and pseudo-Stoneley interface waves unique
estimates for permeability and porosity can be obtained when
impedance and attenuation are combined.
Survival data or more general time-to-event data occur in many areas, including medicine, biology, engineering, economics, and demography, but previously standard methods have requested that all time variables are univariate and independent. This book extends the field by allowing for multivariate times. Applications where such data appear are survival of twins, survival of married couples and families, time to failure of right and left kidney for diabetic patients, life history data with time to outbreak of disease, complications and death, recurrent episodes of diseases and cross-over studies with time responses. As the field is rather new, the concepts and the possible types of data are described in detail and basic aspects of how dependence can appear in such data is discussed. Four different approaches to the analysis of such data are presented. The multi-state models where a life history is described as the subject moving from state to state is the most classical approach. The Markov models make up an important special case, but it is also described how easily more general models are set up and analyzed. Frailty models, which are random effects models for survival data, made a second approach, extending from the most simple shared frailty models, which are considered in detail, to models with more complicated dependence structures over individuals or over time. Marginal modelling has become a popular approach to evaluate the effect of explanatory factors in the presence of dependence, but without having specified a statistical model for the dependence. Finally, the completely non-parametric approach to bivariate censored survival data is described. This book is aimed at investigators who need to analyze multivariate survival data, but due to its focus on the concepts and the modelling aspects, it is also useful for persons interested in such data, but not having a statistical education. It can be used as a textbook for a graduate course in multivariate survival data. It is made from an applied point of view and covers all essential aspects of applying multivariate survival models. Also more theoretical evaluations, like asymptotic theory, are described, but only to the extent useful in applications and for understanding the models. For reading the book, it is useful, but not necessary, to have an understanding of univariate survival data. Philip Hougaard is a statistician at the pharmaceutical company Novo Nordisk. He has a Ph.D. in nonlinear regression models and is Doctor of Science based on a thesis on frailty models. He is associate editor of Biometrics and Lifetime Data Analysis. He has published over 80 papers in the statistical and medical literature.
A critical yet constructive description of the rich analytical techniques and substantive applications that typify how statistical thinking has been applied at the RAND Corporation over the past two decades. Case studies of public policy problems are useful for teaching because they are familiar: almost everyone knows something abut health insurance, global warming, and capital punishment, to name but a few of the applications covered in this casebook. Each case study has a common format that describes the policy questions, the statistical questions, and the successful and the unsuccessful analytic strategies. Readers should be familiar with basic statistical concepts including sampling and regression. While designed for statistics courses in areas ranging from economics to health policy to the law at both the advanced undergraduate and graduate levels, empirical researchers and policy-makers will also find this casebook informative.
Classical Mechanics teaches readers how to solve physics problems; in other words, how to put math and physics together to obtain a numerical or algebraic result and then interpret these results physically. These skills are important and will be needed in more advanced science and engineering courses. However, more important than developing problem-solving skills and physical-interpretation skills, the main purpose of this multi-volume series is to survey the basic concepts of classical mechanics and to provide the reader with a solid understanding of the foundational content knowledge of classical mechanics. Classical Mechanics: Newton's Laws and Uniform Circular Motion focuses on the question: 'Why does an object move?'. To answer that question, we turn to Isaac Newton. The hallmark of any good introductory physics series is its treatment of Newton's laws of motion. These laws are difficult concepts for most readers for a number of reasons: they have a reputation as being difficult concepts; they require the mastery of multiple sub-skills; and problems involving these laws can be cast in a variety of formats.
This book is an introduction to convolution operators with
matrix-valued almost periodic or semi-almost periodic symbols.The
basic tools for the treatment of the operators are Wiener-Hopf
factorization and almost periodic factorization. These
factorizations are systematically investigated and explicitly
constructed for interesting concrete classes of matrix functions.
The material covered by the book ranges from classical results
through a first comprehensive presentation of the core of the
theory of almost periodic factorization up to the latest
achievements, such as the construction of factorizations by means
of the Portuguese transformation and the solution of corona
theorems.
This volume is intended for researchers in engineering and applied mathematics. It can also be used as a textbook for graduate students dealing with non-linear systems and control theory. After a self-contained treatment of the differential-geometric prerequisites, the book deals with controllability and observability properties of nonlinear systems, as well as various ways to obtain input-output representations. Problems of transforming nonlinear systems into simpler forms are discussed, including the feedback linearization problem. The disturbance and input-output decoupling problem are treated in detail, as well as some aspects of feedback stabilization, and interconnection and inversion of nonlinear systems. Emphasis is put on fundamental notions as (controlled) invariant distributions and submanifolds, together with algorithms to compute the required feedbacks. Extensions of these methods to other synthesis problems are indicated in the exercises at the end of each chapter. Special attention is paid to mechanical nonlinear control systems, and finally the theory is extended to general continuous-time and discrete time systems. Numerous examples and exercises illustrate the main results of the book.
This book consists of a series of introductory lectures on mirror symmetry and its surrounding topics. These lectures were provided by participants in the PIMS Superschool for Derived Categories and D-branes in July 2016. Together, they form a comprehensive introduction to the field that integrates perspectives from mathematicians and physicists alike. These proceedings provide a pleasant and broad introduction into modern research topics surrounding string theory and mirror symmetry that is approachable to readers new to the subjects. These topics include constructions of various mirror pairs, approaches to mirror symmetry, connections to homological algebra, and physical motivations. Of particular interest is the connection between GLSMs, D-branes, birational geometry, and derived categories, which is explained both from a physical and mathematical perspective. The introductory lectures provided herein highlight many features of this emerging field and give concrete connections between the physics and the math. Mathematical readers will come away with a broader perspective on this field and a bit of physical intuition, while physicists will gain an introductory overview of the developing mathematical realization of physical predictions.
The subject theory is important in finance, economics, investment strategies, health sciences, environment, industrial engineering, etc.
The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The ``Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quantum-mechanical, relativistic and locality constraints. The central role of symmetries in relativistic quantum field theories is explored in the third section of the book, while in the final section, entitled "Scales", we explore in detail the feature of quantum field theories most critical for their enormous phenomenological success - the scale separation property embodied by the renormalization group properties of a theory defined by an effective local Lagrangian.The book includes a wide range of problems at chapter ends. Solutions can be requested via the publisher's web site.
The centerpiece of the thesis is the search for muon neutrino to electron neutrino oscillations which would indicate a non-zero mixing angle between the first and third neutrino generations ( 13), currently the holy grail of neutrino physics. The optimal extraction of the electron neutrino oscillation signal is based on the novel library event matching (LEM) method which Ochoa developed and implemented together with colleagues at Caltech and at Cambridge, which improves MINOS (Main Injector Neutrino Oscillator Search) reach for establishing an oscillation signal over any other method. LEM will now be the basis for MINOS final results, and will likely keep MINOS at the forefront of this field until it completes its data taking in 2011. Ochoa and his colleagues also developed the successful plan to run MINOS with a beam tuned for antineutrinos, to make a sensitive test of CPT symmetry by comparing the inter-generational mass splitting for neutrinos and antineutrinos. Ochoa s in-depth, creative approach to the solution of a variety of complex experimental problems is an outstanding example for graduate students and longtime practitioners of experimental physics alike. Some of the most exciting results in this field to emerge in the near future may find their foundations in this thesis.
Rationality - as opposed to 'ad-hoc' - and asymptotics - to emphasize the fact that perturbative methods are at the core of the theory - are the two main concepts associated with the Rational Asymptotic Modeling (RAM) approach in fluid dynamics when the goal is to specifically provide useful models accessible to numerical simulation via high-speed computing. This approach has contributed to a fresh understanding of Newtonian fluid flow problems and has opened up new avenues for tackling real fluid flow phenomena, which are known to lead to very difficult mathematical and numerical problems irrespective of turbulence. With the present scientific autobiography the author guides the reader through his somewhat non-traditional career; first discovering fluid mechanics, and then devoting more than fifty years to intense work in the field. Using both personal and general historical contexts, this account will be of benefit to anyone interested in the early and contemporary developments of an important branch of theoretical and computational fluid mechanics.
Discover the relevance of mathematics in your own life as you master important concepts and skills in Waner/Costenoble’s APPLIED CALCULUS, 8th Edition. Updated, numerous examples and applications use real data from well-known businesses, current economic and life events -- from cryptocurrency to COVID -- to demonstrate how the principles you are learning impact you. Readable, streamlined content clearly presents concepts while numerous learning features and tools help you review and practice. Spreadsheet and TI graphing calculator instructions appear where needed. In addition, WebAssign online tools and an interactive eTextbook include teaching videos by an award-winning instructor. You can refine your skills in the necessary math prerequisites with additional examples and powerful adaptive practice sessions. A helpful website from the authors also offers online tutorials and videos on every topic to support your learning, no matter what your learning style.
This book is intended as an introductory lecture in material physics, in which the modern computational group theory and the electronic structure calculation are in collaboration. The first part explains how to use computer algebra for applications in solid-state simulation, based on the GAP computer algebra package. Computer algebra enables us to easily obtain various group theoretical properties, such as the representations, character tables, and subgroups. Furthermore it offers a new perspective on material design, which could be executed in a mathematically rigorous and systematic way. The second part then analyzes the relation between the structural symmetry and the electronic structure in C60 (as an example of a system without periodicity). The principal object of the study was to illustrate the hierarchical change in the quantum-physical properties of the molecule, which correlates to the reduction in the symmetry (as it descends down in the ladder of subgroups). The book also presents the computation of the vibrational modes of the C60 by means of the computer algebra. In order to serve the common interests of researchers, the details of the computations (the required initial data and the small programs developed for the purpose) are explained in as much detail as possible.
In this edition, the scope and character of the monograph did not change with respect to the first edition. Taking into account the rapid development of the field, we have, however, considerably enlarged its contents. Chapter 4 includes two additional sections 4.4 and 4.6 on theory and algorithms of D.C. Programming. Chapter 7, on Decomposition Algorithms in Nonconvex Optimization, is completely new. Besides this, we added several exercises and corrected errors and misprints in the first edition. We are grateful for valuable suggestions and comments that we received from several colleagues. R. Horst, P.M. Pardalos and N.V. Thoai March 2000 Preface to the First Edition Many recent advances in science, economics and engineering rely on nu merical techniques for computing globally optimal solutions to corresponding optimization problems. Global optimization problems are extraordinarily di verse and they include economic modeling, fixed charges, finance, networks and transportation, databases and chip design, image processing, nuclear and mechanical design, chemical engineering design and control, molecular biology, and environment al engineering. Due to the existence of multiple local optima that differ from the global solution all these problems cannot be solved by classical nonlinear programming techniques. During the past three decades, however, many new theoretical, algorith mic, and computational contributions have helped to solve globally multi extreme problems arising from important practical applications." |
![]() ![]() You may like...
Recent Trends in Mathematical Modeling…
Vinai K. Singh, Yaroslav D. Sergeyev, …
Hardcover
R6,725
Discovery Miles 67 250
Extending the Horizons: Advances in…
Edward K. Baker, Anito Joseph, …
Hardcover
R3,057
Discovery Miles 30 570
Formal Aspects of Context
Pierre Bonzon, Marcos Cavalcanti, …
Hardcover
R3,156
Discovery Miles 31 560
Optimization on Metric and Normed Spaces
Alexander J Zaslavski
Hardcover
R3,295
Discovery Miles 32 950
A Smooth and Discontinuous Oscillator…
Qingjie Cao, Alain Leger
Hardcover
R5,066
Discovery Miles 50 660
C++ How to Program: Horizon Edition
Harvey Deitel, Paul Deitel
Paperback
R1,954
Discovery Miles 19 540
Software Development Techniques for…
Khalid A. Buragga, Noor Zaman
Hardcover
R5,651
Discovery Miles 56 510
CMOS Analog IC Design for 5G and Beyond
Sangeeta Singh, Rajeev Arya, …
Hardcover
R5,349
Discovery Miles 53 490
Towards Engineering Free/Libre Open…
Brian Fitzgerald, Audris Mockus, …
Hardcover
R4,314
Discovery Miles 43 140
|